Comparative Study of Heat Transfer in a Mini/Micro Pipe With Water and Liquid Metal As Fluid

Author(s):  
Xu-Dong Zhang ◽  
Jian-Ye Gao ◽  
Jing Liu

Abstract Recently, the new research field of room temperature liquid metal cooling for extreme heat flux electronic devices has gradually attracted much attention. And many investigations claimed that liquid metal cooling has a better heat transfer performance than water cooling. However, such a conclusion was just applicable to the special geometry sizes. This paper is dedicated to deeply interpret and systematically compare the laminar heat transfer in a mini/micro pipe with water and liquid metal as heat transfer fluid. Theoretical analysis for the laminar fully developed segment and numerical investigation for the laminar developing segment were conducted. The results indicated that liquid metal galinstan shows a better heat transfer performance in mini-pipe. And the shorter the pipe, the better performance the liquid metal cooling has. However, when the velocity is small, the galinstan cooling is worse than water cooling in micro-pipe. Moreover, based on thermal resistance analysis, the general criterion equation for laminar developed segment was derived to judge which cooling method possesses a better heat transfer performance. Overall, this comparative study provides a comparison method and criterion about liquid metal cooling and water cooling, which will attribute to the coolant selection and heat sink design.

2019 ◽  
Vol 141 (7) ◽  
Author(s):  
Tingting Hao ◽  
Hongbin Ma ◽  
Xuehu Ma

A new oscillating heat pipe (OHP) charged with hybrid fluids can improve thermal performance. The key difference in this OHP is that it uses room temperature liquid metal (Galinstan consisting of gallium, indium, and tin) and water as the working fluid. The OHP was fabricated on a copper plate with six turns and a 3 × 3 mm2 cross section. The OHP with hybrid fluids as the working fluid was investigated through visual observation and thermal measurement. Liquid metal was successfully driven to flow through the OHP by the pressure difference between the evaporator and the condenser without external force. Experimental results show that while added liquid metal can increase the heat transport capability, liquid metal oscillation amplitude decreases as the filling ratio of liquid metal increases. Visualization of experimental results show that liquid metal oscillation position and velocity increase as the heat input increases. Oscillating motion of liquid metal in the OHP significantly increases the heat transfer performance at high heat input. The lowest thermal resistance of 0.076 °C/W was achieved in the hybrid fluids-filled OHP with a heat input of 420 W. We experimentally demonstrated a 13% higher heat transfer performance using liquid metal as the working fluid compared to an OHP charged with pure water.


Sign in / Sign up

Export Citation Format

Share Document