Application of an Experimental EGR System to a Medium Speed EMD Marine Engine

Author(s):  
John Hedrick ◽  
Steven G. Fritz ◽  
Ted Stewart

This paper focuses on quantifying emission reductions associated with various on-engine technologies applied to Electro-Motive Diesel two-cycle diesel engines, which are very popular in marine and locomotive applications in North America. This paper investigates the benefits of using exhaust gas recirculation (EGR), separate circuit aftercooler, and retarded injection timing on a EMD 12-645E7 marine engine. The EGR system alone provided up to a 32.9% reduction in brake specific Nitrogen Oxides (NOx) emissions while demonstrating less than one percent increase in cycle brake specific fuel consumption (BSFC). The brake specific particulate matter emissions increased somewhat, but at a modest rate based on the amount of NOx emission reduction. When the enhanced aftercooler system was combined with the addition of EGR, there was a 31.9% reduction in NOx and essentially no change to the BSFC when compared to the baseline test. The minimum manifold air temperature (MAT) was limited due to the size of the standard EMD aftercooler heat exchanger that is fitted on the engine. No efforts to modify the turbocharger to improve the turbo match to take advantage of the lower manifold air temperatures and the corresponding lower exhaust energy. Once 4° static injection timing retard was introduced, along with the EGR and the minimum MAT, a maximum NOx reduction of 49% was realized with only a 1.1% increase over the baseline BSFC.

Author(s):  
Ashwin Salvi ◽  
John Hoard ◽  
Mitchell Bieniek ◽  
Mehdi Abarham ◽  
Dan Styles ◽  
...  

The implementation of exhaust gas recirculation (EGR) coolers has recently been a widespread methodology for engine in-cylinder NOX reduction. A common problem with the use of EGR coolers is the tendency for a deposit, or fouling layer to form through thermophoresis. These deposit layers consist of soot and volatiles and reduce the effectiveness of heat exchangers at decreasing exhaust gas outlet temperatures, subsequently increasing engine out NOX emission. This paper presents results from a novel visualization rig that allows for the development of a deposit layer while providing optical and infrared access. A 24-hour, 379 micron thick deposit layer was developed and characterized with an optical microscope, an infrared camera, and a thermogravimetric analyzer. The in-situ thermal conductivity of the deposit layer was calculated to be 0.047 W/mK. Volatiles from the layer were then evaporated off and the layer reanalyzed. Results suggest that volatile bake-out can significantly alter the thermo-physical properties of the deposit layer and hypotheses are presented as to how.


2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Saravanan Duraiarasan ◽  
Rasoul Salehi ◽  
Anna Stefanopoulou ◽  
Siddharth Mahesh ◽  
Marc Allain

Abstract Stringent NOX emission norm for heavy duty vehicles motivates the use of predictive models to reduce emissions of diesel engines by coordinating engine parameters and aftertreatment. In this paper, a physics-based control-oriented NOX model is presented to estimate the feedgas NOX for a diesel engine. This cycle-averaged NOX model is able to capture the impact of all major diesel engine control variables including the fuel injection timing, injection pressure, and injection rate, as well as the effect of cylinder charge dilution and intake pressure on the emissions. The impact of the cylinder charge dilution controlled by the engine exhaust gas recirculation (EGR) in the highly diluted diesel engine of this work is modeled using an adiabatic flame temperature predictor. The model structure is developed such that it can be embedded in an engine control unit without any need for an in-cylinder pressure sensor. In addition, details of this physics-based NOX model are presented along with a step-by-step model parameter identification procedure and experimental validation at both steady-state and transient conditions. Over a complete federal test procedure (FTP) cycle, on a cumulative basis the model prediction was more than 93% accurate.


Author(s):  
Khawar Mohiuddin ◽  
Minhoo Choi ◽  
Junkyu Park ◽  
Sungwook Park

Nozzle hydraulic flow rate is a critical parameter that affects the combustion process and plays a vital role in the production of emissions from a diesel engine. In this study, injection characteristics, such as normalized injection rate and spray tip penetration, were analyzed for different hydraulic flow rate injectors with the help of spray experiments. To further investigate the effects of hydraulic flow rate on engine-out particulate and gaseous emissions, engine experiments were performed for different values of hydraulic flow rate in multiple injectors. Various operating conditions and loading configurations were examined, and the effects of varying start of injection and exhaust gas recirculation rates for different hydraulic flow rates were analyzed. A separate Pegasor Particle Sensor (PPS-M) sensor was used to measure and collect data on the particle number, and an analysis was conducted to investigate the relation of particle number with hydraulic flow rate, injection timing, and exhaust gas recirculation rate. Results of the spray experiment exhibited a decreasing injection duration and increasing spray tip penetration with increasing hydraulic flow rate. Effect of hydraulic flow rate on combustion and emission characteristics were analyzed from engine experiment results. Least ignition delay was achieved using a smaller hole diameter, retarded injection timing, and lowest EGR%. Higher hydraulic flow rate with retarded injection timing and higher EGR% helped in reduction of NOx emissions and brake-specific fuel consumption, but particulate emissions were increased. Best particulate matter–NOx trade-off was achieved with lowest hydraulic flow rate.


2019 ◽  
pp. 146808741989153 ◽  
Author(s):  
Magín Lapuerta ◽  
Ángel Ramos ◽  
Sara Rubio ◽  
Carles Estévez

The new European directive for the promotion of renewable energy mandates an increase in the share of advanced and waste-based biofuels in the transport sector. In this study, an advanced glycerol-derived biofuel was used as a component of a ternary blend, denoted as o·bio®. This blend included 27.4 %v/v of fatty acid glycerol formal ester, 69.6 %v/v of fatty acid methyl ester and 3 %v/v of acetals obtained as a by-product of the fatty acid glycerol formal ester production process (which were proved to improve cold-flow properties). Finally, o·bio® was blended with diesel fuel at a content of 20 %v/v. Two operating conditions based on usual driving modes were selected, where the engine calibration could be re-optimized after the change of fuel, corresponding to vehicle velocities of 50 and 70 km/h. Since the main effect of the blend used is to reduce particulate matter emissions, exhaust gas recirculation was increased and injection was delayed, so that the initial benefits in particulate matter emissions could be re-distributed into benefits in both particulate matter and nitrogen oxides (NOx) emissions. From a combined analysis of the particulate matter–NOx trade-off and trying to limit the negative effect of delaying injection on fuel consumption, the final proposal was to set an additional 6% exhaust gas recirculation at 50 km/h and an additional 3% exhaust gas recirculation at 70 km/h, while delaying injection 2 °CA after top dead center at both vehicle operating conditions with respect to the original calibration. The use of the blend along with the optimization of the engine calibration is expected to reduce particulate matter and NOx emissions by around 50% with a vehicle speed condition of 50 km/h and to reduce particulate matter and NOx emissions by around 30% and 40% at 70 km/h with respect to diesel fuel emissions.


Author(s):  
Antonio C. A. Lipardi ◽  
Jeffrey M. Bergthorson ◽  
Gilles Bourque

Oxides of nitrogen (NOx) are pollutants emitted by combustion processes during power generation and transportation that are subject to increasingly stringent regulations due to their impact on human health and the environment. One NOx reduction technology being investigated for gas-turbine engines is exhaust-gas recirculation (EGR), either through external exhaust-gas recycling or staged combustion. In this study, the effects of different percentages of EGR on NOx production will be investigated for methane–air and propane–air flames at a selected adiabatic flame temperature of 1800 K. The variability and uncertainty of the results obtained by the gri-mech 3.0 (GRI), San-Diego 2005 (SD), and the CSE thermochemical mechanisms are assessed. It was found that key parameters associated with postflame NO emissions can vary up to 192% for peak CH values, 35% for thermal NO production rate, and 81% for flame speed, depending on the mechanism used for the simulation. A linear uncertainty analysis, including both kinetic and thermodynamic parameters, demonstrates that simulated postflame nitric oxide levels have uncertainties on the order of ±50–60%. The high variability of model predictions, and their relatively high associated uncertainties, motivates future experiments of NOx formation in exhaust-gas-diluted flames under engine-relevant conditions to improve and validate combustion and NOx design tools.


Author(s):  
A. M. Elkady ◽  
A. R. Brand ◽  
C. L. Vandervort ◽  
A. T. Evulet

In a carbon constrained world there is a need for capturing and sequestering CO2. Post-combustion carbon capture via Exhaust Gas Recirculation (EGR) is considered a feasible means of reducing emission of CO2 from power plants. Exhaust Gas Recirculation is an enabling technology for increasing the CO2 concentration within the gas turbine cycle and allow the decrease of the size of the separation plant, which in turn will enable a significant reduction in CO2 capture cost. This paper describes the experimental work performed to better understand the risks of utilizing EGR in combustors employing dry low emissions (DLE) technologies. A rig was built for exploring the capability of premixers to operate in low O2 environment, and a series of experiments in a visually accessible test rig was performed at representative aeroderivative gas turbine pressures and temperatures. Experimental results include the effect of applying EGR on operability, efficiency and emissions performance under conditions of up to 40% EGR. Findings confirm the viability of EGR for enhanced CO2 capture; In addition, we confirm benefits of NOx reduction while complying with CO emissions in DLE combustors under low oxygen content oxidizer.


Author(s):  
N Saravanan ◽  
G Nagarajan

Hydrogen is receiving considerable attention as an alternative fuel to replace the rapidly depleting petroleum-based fuels. Its clean burning characteristics help to meet the stringent emission norms. In this experimental investigation a single-cylinder diesel engine was converted to operate in hydrogen—diesel dual-fuel mode. Hydrogen was injected in the intake manifold and the diesel was injected directly inside the cylinder. The injection timing and the injection duration of hydrogen were optimized on the basis of performance and emissions. Best results were obtained with hydrogen injection at gas exchange top dead centre with an injection duration of 30° crank angle. The flowrate of hydrogen was optimized as 7.5l/min with optimized injection timing and duration. The optimized exhaust gas recirculation (EGR) flowrate was 20 per cent at 75 per cent load. The optimized timings were chosen on the basis of performance, emission, and combustion characteristics. The EGR technique was adopted in the hydrogen—diesel dual-fuel mode by varying the EGR flowrate from 0 per cent to 25 per cent in steps of 5 per cent. The maximum quantity of exhaust gases recycled during the test was 25 per cent (up to 75 per cent load); beyond that unstable combustion was observed with an increase in smoke. The brake thermal efficiency with 20 per cent EGR decreases by 9 per cent compared with diesel. The nitrogen oxide (NO x) emission in hydrogen manifold injection decreases by threefold with 20 per cent EGR operation at full load. The NO x emission tends to reduce drastically with increase in the EGR percentage at all load conditions owing to the increase in heat capacity of the exhaust gases. The smoke decreases by 80 per cent in the dual-fuel operation compared with diesel at 75 per cent load.


Sign in / Sign up

Export Citation Format

Share Document