Vibration Alarm Analysis and Treatment of Main Coolant Pump in Nuclear Power Plant

Author(s):  
Zhen Li ◽  
Pengcheng Du ◽  
Gujian Ma

The structure of main coolant pump in a nuclear power plant and vibration alarm are introduced. Vibration analysis and trouble diagnosis have been carried out. It shows that pump shaft vibration is mainly composed of running frequency (1×) and half of running frequency (0.5×), motor shaft vibration is just composed of 1×. The vibration fluctuation in pump shaft is caused by the variation of amplitude in 0.5×. Based on vibration analysis result, the fault investigation has been launched, in which it includes installment, measurement, dynamic balance and pump design. After detailed investigation, the excessive vibration was induced by the dynamic unbalance of pump shaft and unsteady vortex of shaft seal water. The research for treatment has been implemented on dynamic balance and seal water flow. It is suggested to increase the seal water flow to control vibration fluctuation. The result shows that this method is effective, economical, safe, and very easy to implement for suppressing flash vibration alarm.

Author(s):  
Zhaohui Ren ◽  
Hui Ma ◽  
He Li ◽  
Guiqiu Song ◽  
Wenjian Zhou

The reactor coolant pump in nuclear power plant is the only revolving equipment in the nuclear power plant. Its functional stability will directly affect the security of nuclear power plant. The coolant pump of a very nuclear plant is examined by using response spectrum analysis to analysis dynamic characteristics and responses aiming at finding the natural frequencies of vibration, modes of vibration and seismic responses, and any possible step which may cause damage of the whole system. The favorable spectrum and unfavorable one are investigated as well. The paper focuses on avoiding the detrimental effects caused by earthquakes, therefore may lay down a theoretical foundation for structural design and installation.


Author(s):  
Lei You ◽  
Fuchun Sun ◽  
Pan He ◽  
Hongkun Xu ◽  
Fang Fang

In this paper, we develop a monitoring system of reactor coolant pumps in nuclear power plant (CPS). The safe running of reactor coolant pump is important for nuclear power plant. Based on the Fourier transform (FT) and some algorithm, The data collected from the pump are analyzed. Once the accident happens, it would cause unimaginable outcome. The system will be jumped to failure process mode when the pump has something wrong. The advanced VXI and virtual instrument technology are applied to system, and the reactor coolant pump will be monitored overall so as to assure that the reactor coolant pump runs in safe, which has a significant value to secure the safe operation and reliability of the nuclear plant. The monitoring system will help the operators find fault of reactor coolant pump.


Author(s):  
Huadong Zhu

Nuclear Power Project RCL (reactor coolant loop) is one of the most critical nuclear safety class 1 equipment in PWR nuclear power plant. Filled with borated water, the RCL is a closed loop and serves as pressure boundary incorporating the reactor pressure vessel, steam generator and reactor coolant pump. Since in-service inspection is required for welds of the RCL, the two sides of the welds shall be bored to meet UT (Ultrasonic Testing) inspection requirements. The design standard states that “if the weld is subject to service inspection, the length of the counterbore shall be 2Tmin (Tmin = minimum of wall thickness) for pipe and Tmin for components and fittings. Therefore, the minimal wall thickness of the boring area inside the RCL shall also meet design requirements. Examination of the RCLs delivered to the nuclear power project sites showed that the wall thickness of some parts of the RCL exceed tolerance in varying degrees (the wall thickness is too thin). The RCL borings need to be analyzed to mitigate the negative impact of insufficient wall thickness, maintain RCL wall thickness to the largest extent and meet design requirements. Under the condition of the jobsite data are idealized, this study analyzes the boring plans for the cold leg of loop B at the reactor vessel side for this nuclear power plant Unit 1 NI (Nuclear Island) and discusses the three methods of boring, namely, general boring, taper boring and eccentric boring. It finds that a combination of taper boring and eccentric boring is the optimal plan. This joint boring technique can help achieve the minimal boring wall thickness, reduce the grinding quantity and maintain the required wall thickness, thus resolving the out-of-tolerance issue. In addition, it meets the design requirements, the wall thickness and in-service inspection requirements. Supervision agency approved the application of the joint boring technique to the RCL for the projects. The RCL installation has proved to be a success.


Author(s):  
G. Thomas Elicson ◽  
James P. Burelbach ◽  
Theodore A. Lang

The U.S. NRC is currently evaluating nuclear plant responses to Generic Letter (GL) 96-06, “Assurance of Equipment Operability and Containment Integrity During Design-Basis Accident Conditions” [1]. GL 96-06 is concerned with potential two-phase flow and water hammer conditions that could be present in the cooling water systems of nuclear power plants during design-basis accidents. Nuclear power plants rely on large capacity service water pumps to supply cooling water flow, via an extensive pipe network, to heat exchangers such as room coolers, pump lube oil coolers, and containment air coolers (CACs), for normal and abnormal plant operation. Following a postulated a loss of offsite power (LOOP) event, the normal electrical power supply to the service water pump would be lost resulting in a 20 to 30 second cooling water flow interruption while a diesel generator is started and the service water pump load is sequenced onto the diesel generator. In power plants, such as the Davis-Besse Nuclear Power Plant with open service water systems that draw from a lake or a river and supply safety-related CAC heat exchangers located 30 to 40 feet above the pump outlet, this could lead to cold water column separation in the heat exchanger supply and return piping. If a loss of coolant accident (LOCA) occurs coincident with the LOOP, then boiling in the CAC heat exchanger tubes could occur, as well. Upon restoration of the cooling water flow, dynamic loading could be expected as steam condenses and water columns rejoin. The TREMOLO computer program [2,3] has been used to calculate dynamic thermal hydraulic response and reaction forces in service water piping systems for several nuclear power plants in response to GL 96-06. A consistent result obtained in each of these GL 96-06 analyses is that the LOOP + LOCA scenario produces the bounding loads rather than the LOOP-only scenario. This result seemingly contradicts current industry thinking which suggests that because the water columns are colder and the void fraction lower during LOOP-only scenarios, the LOOP-only loads should be bounding [4,5,6]. While the physics supports the conclusion that the rejoining of colder water columns will generally yield the largest water hammer pressure rise, when actual plant geometry and credible accident scenarios are analyzed, a different picture emerges. This paper couples insights obtained from the GL 96-06 TREMOLO analysis of the Davis-Besse Nuclear Power Plant with independent hand calculations and experimental evidence to support the conclusion that the LOCA+LOOP scenario will produce the bounding loads in service water piping systems.


Sign in / Sign up

Export Citation Format

Share Document