Volume 1: Fora, Parts A, B, C, and D
Latest Publications


TOTAL DOCUMENTS

368
(FIVE YEARS 0)

H-INDEX

8
(FIVE YEARS 0)

Published By ASMEDC

0791836967

Author(s):  
A. H. Raza ◽  
R. A. Lai-Fook ◽  
C. J. Lawrence

A theoretical model of time-dependent flow based on Reynolds equation using emulsion processing in a Cavity Transfer Mixer (CTM) has been developed in Mathematica and is presented in this work. It is a continuum model, which allows the study of materials undergoing rapid deformation. The flow of a fluid in a CTM is examined using a finite difference analysis (FDA) to solve the flow equations for an unwound section with cavities arranged in a rectangular pattern. Periodic boundary conditions are included in the model to predict the pressure distribution, which allows subsequent determination of the flow field. The solution procedure gives a smooth function for the pressure field, with equal pressures at the boundaries in the y-direction and an overall mean pressure gradient in the x-direction. Once the pressure has been found, several flow properties follow directly. The flow in the downstream axial direction is seen to consist of purely pressure-driven flow. In contrast, the flow in the cross-cavity direction is a recirculating flow driven by the drag velocity of the moving rotor surface. These two flows taken together combine into a helical flow travelling through the cavity. Because of this, there is likely to bre a high degree of laminar and distributive flow in this type of machine. The experimental part of this work addresses the processing of an emulsion in the CTM when it is run under batch and continuous modes of operation. The flow characteristics have been studied for varying rotor speeds of 0 rpm, 16 rpm, 32 rpm, 48 rpm and 64 rpm. Also studied were the changes that the emulsion exhibits along the mixer length and with time in the mixer. The experiments indicate that increase in the rotational speed causes the viscosity to reduce systematically in both batch and continuous modes of operation.


Author(s):  
Lisa Mondy ◽  
Rekha Rao ◽  
Eric Lindgren ◽  
Amy Sun ◽  
Robert Lagasse ◽  
...  

Manufacturing applications for filled polymers include encapsulation of microelectronics and injection molding of composite parts. Predictive tools for simulating these manufacturing processes require knowledge of time- and temperature-dependent rheology of the polymer as well as information about local particle concentration. The overall system rheology is highly dependent on the particle concentration. The local particle concentration can change due to gravity, convection and shear-induced migration. For the epoxy systems of interest, an extent of reaction can be used to track the degree of cure. We couple the curing model with a diffusive flux suspension model [Zhang and Acrivos 1994] to determine the particle migration. This results in a generalized Newtonian model that has viscosity as a function of temperature, cure and concentration. Using this model, we examine settling of the particulate phase in both flowing and quiescent curing systems. We focus on settling in molds and flow in wide-gap counter-rotating cylinders. The heat transfer, including the exothermic polymerization reaction, must be modeled to achieve accurate results. The model is validated with temperature measurements and post-test microscopy data. Particle concentration is determined with x-ray microfocus visualization or confocal microscopy. Agreement between the simulations and experimental results is fair.


Author(s):  
Bong Seong Jung ◽  
Bryan W. Karney

Genetic algorithms have been used to solve many water distribution system optimization problems, but have generally been limited to steady state or quasi-steady state optimization. However, transient events within pipe system are inevitable and the effect of water hammer should not be overlooked. The purpose of this paper is to optimize the selection, sizing and placement of hydraulic devices in a pipeline system considering its transient response. A global optimal solution using genetic algorithm suggests optimal size, location and number of hydraulic devices to cope with water hammer. This study shows that the integration of a genetic algorithm code with a transient simulator can improve both the design and the response of a pipe network. This study also shows that the selection of optimum protection strategy is an integrated problem, involving consideration of loading condition, device and system characteristics, and protection strategy. Simpler transient control systems are often found to outperform more complex ones.


Author(s):  
Albert Ruprecht ◽  
Ralf Neubauer ◽  
Thomas Helmrich

The vortex instability in a spherical pipe trifurcation is investigated by applying a Very Large Eddy Simulation (VLES). For this approach an new adaptive turbulence model based on an extended version of the k-ε model is used. Applying a classical Reynolds-averaged Navier-Stokes-Simulation with the standard k-ε model is not able to forecast the vortex instability. However the prescribed VLES method is capable to predict this flow phenomenon. The obtained results show a reasonable agreement with measurements in a model test.


Author(s):  
Charles C. Maneri ◽  
Peter F. Vassallo

The dynamic behavior of single bubbles rising in quiescent liquid Suva (R134a) in a duct has been examined through the use of a high speed video system. Size, shape and velocity measurements obtained with the video system reveal a wide variety of characteristics for the bubbles as they rise in both finite and infinite media. This data, coupled with previously published data for other working fluids, has been used to assess and extend a rise velocity model given by Fan and Tsuchiya. As a result of this assessment, a new rise velocity model has been developed which maintains the physically consistent characteristics of the surface tension in the distorted bubbly regime. In addition, the model is unique in that it covers the entire range of bubble sizes contained in the spherical, distorted and planar slug regimes.


Author(s):  
Cristian Marchioli ◽  
Fabio Sbrizzai ◽  
Alfredo Soldati

Particle transfer in the wall region of turbulent boundary layers is dominated by the coherent structures which control the turbulence regeneration cycle. Coherent structures bring particles toward the wall and away from the wall and favour particle segregation in the viscous region giving rise to nonuniform particle distribution profiles which peak close to the wall. In this work, we focus on the transfer mechanism of different size particles and on the influence of gravity on particles deposition. By tracking O(105) particles in Direct Numerical Simulation (DNS) of a turbulent channel flow at Reτ = 150, we find that particles may reach the wall directly or may accumulate in the wall region, under the low-speed streaks. Even though low-speed streaks are ejection-like environments, particles are not re-entrained into the outer region. Particles segregated very near the wall by the trapping mechanisms we investigated in a previous work [1] are slowly driven to the wall. We find that gravity plays a role on particle distribution but, for small particles (τp+ < 3), the controlling transfer mechanism is related to near-wall turbulence structure.


Author(s):  
Thomas A. Ward ◽  
Jamie S. Ervin ◽  
Richard C. Striebich ◽  
Steven Zabarnick

Advanced aircraft engines are reaching a practical heat transfer limit beyond which the convective heat transfer provided by hydrocarbon fuels is no longer adequate. One solution is to use an endothermic fuel that absorbs heat through chemical reactions. This paper describes the development of a two-dimensional computational model of the heat and mass transport associated with a flowing fuel using a unique global chemical kinetics model. Most past models do not account for changes in the chemical composition of a flowing fuel and also do not adequately predict flow properties in the supercritical regime. The two-dimensional computational model presented here calculates the changing flow properties of a supercritical reacting fuel by use of experimentally derived proportional product distributions. The present calculations are validated by measured experimental data obtained from a flow reactor of mildly cracked n-decane. It is believed that these simulations will assist the fundamental understanding of high temperature fuel flow experiments.


Author(s):  
W. H. Ahmed ◽  
C. Y. Ching ◽  
M. Shoukri

The pressure recovery and void fraction change of air-oil two-phase flow across a sudden expansion has been investigated experimentally over a range of flow conditions. The pressure upstream and downstream of a half-inch to one-inch sudden expansion was measured using a series of pressure taps, and capacitance sensors were used to measure the void fraction along the test section. The void fraction increases as the flow approaches the sudden expansion section, with a sudden increase immediately downstream of the expansion followed by a gradual relaxation to the fully developed value further downstream. The normalized pressure recovery coefficient using the dynamic head based on the homogeneous density and two-phase velocity is found to collapse when plotted as a function of the mass quality. The experimental pressure recovery data are compared with predictions from existing models, and are found to be in good agreement with the Delhaye model with the void fraction relation of Wallis.


Author(s):  
Guy Phuong ◽  
Sylvester Abanteriba ◽  
Paul Haley ◽  
Philippe Guillerot

Volutes are widely used in centrifugal compressors for industrial processes, refrigeration systems, small gas turbines and gas pipelines. However, large costs associated with the volute design and analysis process can be reduced with the introduction of a software design system that ties together both geometry creation and mesh generation having the ultimate intent of improving stage efficiency. Computational Fluid Dynamics (CFD) has become an integral part of engineering design. High quality grids need to be produced as part of the analysis process. Engineers of different expertise may be required to determine volute design constraints and parameters, produce the geometry, and generate a high quality grid. The current research aims to develop and demonstrate a volute design tool that allows design engineers the ability to easily and efficiently generate volute geometry and automate grid generation by means of geometrical constraints using functional relationships. The approach was outlined in [1]. Visualization of volute geometry can be in two-dimensional (2D) or three-dimensional (3D) modes. Control of the diffuser upstream of the scroll, the scroll itself and the conic are totally integrated in the design system. The user can position the conic anywhere in space and control the shape of the conic centroid curve, therefore having complete control over the development of the tongue region. The program will output data for automated grid generation where user can control resulting grid properties. Once the desired design configuration has been determined, the users can output the geometry surfaces and wireframes to a Computer Aided Design (CAD) package for production. Every little detail is also incorporated into the software from volute draft angle, discharge conic centroid shape, to cross section fillet radii. Upon entering all the required constraints and parameters of the volute, the geometry is created in seconds. Grids can be generated in minutes accommodating geometrical changes thus reducing the bottlenecks associated with geometry/grid generation for CFD applications.


Author(s):  
Ryuichi Sato ◽  
Takayuki Mori ◽  
Ryo Yakushiji ◽  
Kenji Naganuma ◽  
Masaharu Nishimura ◽  
...  

The Flow Noise Simulator (FNS) of the 1st Research Center of TRDI/JDA (Japan Defense Agency) is a large, variable pressure, recirculating water tunnel with very low background noise level. The tunnel is 20m high and 49m long, containing 2000m3 of water. The test section has a square cross section of 2m × 2m with 10m in length. It will accept large size surface ship models of 6m, submarine models of 4m in length and full scale ship appendix models. The FNS is currently under construction and will be accomplished in 2005. It will be used for a wide variety of hydrodynamic and hydroacoustic testing of surface ships and submarines, such as propeller cavitation noise measurements and propeller-hull interaction observation, with sufficiently large scale models. Conceptual design of the FNS was started in 1996 and evaluated by following scale model studies. This paper discusses some technical issues of the FNS.


Sign in / Sign up

Export Citation Format

Share Document