Source Term Analysis Considering B4C/Steel Interaction and Oxidation During Severe Accidents

Author(s):  
Jun Ishikawa ◽  
Tomoyuki Sugiyama ◽  
Yu Maruyama

The Japan Atomic Energy Agency (JAEA) is pursuing the development and application of the methodologies on fission product (FP) chemistry for source term analysis by using the integrated severe accident analysis code THALES2. In the present study, models for the eutectic interaction of boron carbide (B4C) with steel and the B4C oxidation were incorporated into THALES2 code and applied to the source term analyses for a boiling water reactor (BWR) with Mark-I containment vessel (CV). Two severe accident sequences with drywell (D/W) failure by overpressure initiated by loss of core coolant injection (TQUV sequence) and long-term station blackout (TB sequence) were selected as representative sequences. The analyses indicated that a much larger amount of species from the B4C oxidation was produced in TB sequence than TQUV sequence. More than a half of carbon dioxide (CO2) produced by the B4C oxidation was predicted to dissolve into the water pool of the suppression chamber (S/C), which could largely influence pH of the water pool and consequent formation and release of volatile iodine species.

Author(s):  
Gert Sdouz

The goal of this work is the investigation of the influence of different accident management strategies on the thermal-hydraulics in the containment during a Large Break Loss of Coolant Accident with a large containment leak from the beginning of the accident. The increasing relevance of terrorism suggests a closer look at this kind of severe accidents. Normally the course of severe accidents and their associated phenomena are investigated with the assumption of an intact containment from the beginning of the accident. This intact containment has the ability to retain a large part of the radioactive inventory. In these cases there is only a release via a very small leakage due to the untightness of the containment up to cavity bottom melt through. This paper represents the last part of a comprehensive study on the influence of accident management strategies on the source term of VVER-1000 reactors. Basically two different accident sequences were investigated: the “Station Blackout”-sequence and the “Large Break LOCA”. In a first step the source term calculations were performed assuming an intact containment from the beginning of the accident and no accident management action. In a further step the influence of different accident management strategies was studied. The last part of the project was a repetition of the calculations with the assumption of a damaged containment from the beginning of the accident. This paper concentrates on the last step in the case of a Large Break LOCA. To be able to compare the results with calculations performed years ago the calculations were performed using the Source Term Code Package (STCP), hydrogen explosions are not considered. In this study four different scenarios have been investigated. The main parameter was the switch on time of the spray systems. One of the results is the influence of different accident management strategies on the source term. In the comparison with the sequence with intact containment it was demonstrated that the accident management measures have quite lower consequences. In addition it was shown that in the case of a “Large Break LOCA”-sequence the intact containment retains the nuclides up to a factor of 20 000. This is much more than in the case of a “Station Blackout”-sequence. Within the frame of the study 17 source terms have been generated to evaluate in detail accident management strategies for VVER-1000 reactors.


2013 ◽  
Vol 2013 ◽  
pp. 1-15 ◽  
Author(s):  
Andrej Prošek ◽  
Leon Cizelj

Stress tests performed in Europe after accident at Fukushima Daiichi also required evaluation of the consequences of loss of safety functions due to station blackout (SBO). Long-term SBO in a pressurized water reactor (PWR) leads to severe accident sequences, assuming that existing plant means (systems, equipment, and procedures) are used for accident mitigation. Therefore the main objective was to study the accident management strategies for SBO scenarios (with different reactor coolant pumps (RCPs) leaks assumed) to delay the time before core uncovers and significantly heats up. The most important strategies assumed were primary side depressurization and additional makeup water to reactor coolant system (RCS). For simulations of long term SBO scenarios, including early stages of severe accident sequences, the best estimate RELAP5/MOD3.3 and the verified input model of Krško two-loop PWR were used. The results suggest that for the expected magnitude of RCPs seal leak, the core uncovery during the first seven days could be prevented by using the turbine-driven auxiliary feedwater pump and manually depressurizing the RCS through the secondary side. For larger RCPs seal leaks, in general this is not the case. Nevertheless, the core uncovery can be significantly delayed by increasing RCS depressurization.


Author(s):  
Kampanart Silva ◽  
Yuki Ishiwatari ◽  
Shogo Takahara

Risk evaluation is an important assessment tool of nuclear safety, and a common index of direct/indirect influences of severe accidents as a compound of risk is necessary then. In this research, various influences of severe accidents are converted to monetary value and integrated. The integrated influence is calculated in a unit of “cost per severe accident” and “cost per kWh”. The authors must emphasize that the aim is not to estimate the accident cost itself but to extend the scope of “risk-informed decision making” for continuous safety improvements of nuclear energy. To calculate the “cost per severe accident” and the “cost per kWh”, typical sequences of severe accidents are picked-up first. Containment failure frequency (CFF) and source terms of each sequence are taken from the results of level 2 probabilistic risk assessment (PRA). The source terms of each sequence is input into the level 3 PRA code OSCAAR which was developed by Japan Atomic Energy Agency (JAEA). The calculations have been made for 248 meteorological sequences, and the results presented in this study are given as expectation values for various meteorological conditions. Using these outputs, the cost per severe accident is calculated. It consists of various costs and other influences converted into monetary values. This methodology is applied to a virtual 1,100 MWe BWR-5 plant. Seismic events are considered as the initiating events. The data obtained from the open documents on the Fukushima Accident are utilized as much as possible. Sensitivity analyses are carried out to identify the dominant influences, sensitive assumptions/parameters to the cost per accident or per kWh. Based on these findings, optimization of radiation protection countermeasures is recommended. Also, the effects of sever accident management are investigated.


Author(s):  
Gueorgui I. Petkov ◽  
Monica Vela-Garcia

The realistic study of dynamic accident context is an invaluable tool to address the uncertainties and their impact on safety assessment and management. The capacities of the performance evaluation of teamwork (PET) procedure for dynamic context quantification and determination of alternatives, coordination, and monitoring of human performance and decision-making are discussed in this paper. The procedure is based on a thorough description of symptoms during the accident scenario progressions with the use of thermo-hydraulic (TH) model and severe accident (SA) codes (melcor and maap). The opportunities of PET procedure for context quantification are exemplified for the long-term station blackout (LT SBO) accident scenario at Fukushima Daiichi #1 and a hypothetic unmitigated LT SBO at peach bottom #1 boiling water reactor (BWR) reactor nuclear power plants (NPPs). The context quantification of these LT SBO scenarios is based on the IAEA Fukushima Daiichi accident report, “State-of-the-Art Reactor Consequence Analysis” and TH calculations made by using maap code at the EC Joint Research Centre.


2020 ◽  
Vol 35 (1) ◽  
pp. 16-23
Author(s):  
Alejandro Reyes-Garcia ◽  
Eduardo Sainz-Mejia ◽  
Javier Ortiz-Villafuerte ◽  
Javier Palacios-Hernandez ◽  
Roberto Lopez-Solis

The aim of this project was to determine the capacity of a multi-venturi scrubber filtering system to cope with vented gas mass-flow rate coming from a BWR Mark II primary containment during a long-term station blackout. The multi-venturi filtering system CFD models were developed in the environment of the open source platforms SALOME and OpenFoam. The first geometrical model was created based on the dimensions of a well-known experimental setup, and the results of the pressure drop along the streamwise co-ordinate showed a maximum difference of 10 % in relation to the experimental values for different cases of liquid to gas mass ratios. Then a full scale multi-venturi model was developed. To study the performance of this system during conditions expected in a severe accident, a gas mixture similar to that occurring in a BWR Mark II containment at venting pressure was used as inlet gas. The gas mass-flow that can be cleansed by individual venturis and the pressure required to activate those venturis were computed. The pressure drop profiles in each sector were also determined as the function of different liquid loadings. The results showed good agreement with the capacity of the design taken as the reference model.


Author(s):  
Wang Ning ◽  
Chen Lei ◽  
Zhang Jiangang ◽  
Yang Yapeng ◽  
Xu Xiaoxiao ◽  
...  

Great interest in severe accident has been motivated since Fukushima accident, which indicates that the probability of severe accident exists even though it is extremely small. Emergency condition is important in decision making in case of severe accident in NPP. Although many studies have been conducted for severe accident, there was necessary to investigate emergency condition of severe accidents that could possibly happen and haven’t been sufficiently analyzed. Since station blackout (SBO) happened in Fukushima accident, a number of studies in severe accidents initiated by SBO have been carried out. Off-site power is assumed to be lost during large break loss of coolant accident (LBLOCA), but there is few study to find out emergency condition during LBLOCA if both of off-site and on-site power are lost. A hypothetical severe accident initiated by LBLOCA along with SBO in a China three-loop PWR was simulated in the paper using MELCOR code. Emergency condition was obtained including start of core uncover, start of zirconium-water reaction, failure of fuel cladding and failure of the lower head. Thermal-hydraulic response of the core during the accident was also analyzed in the paper. The model for this study consists of 46 control volumes (27 in primary loop, 17 in secondary loop, 1 in containment and 1 in environment) and 52 flow paths. High pressure safety injection (HPSI) and low pressure safety injection (LPSI) are lost because of loss of on-site and off-site power, and simultaneously main feed water and auxiliary feed water of the steam generators are lost for the same reason. The accumulator can inject water into the core since it is passive and doesn’t need any power. Results of the study will be useful in gaining an insight into detailed severe accident emergency condition that could happen in a China three-loop PWR and may provide basis for severe accident mitigation.


2012 ◽  
Vol 2012 ◽  
pp. 1-25 ◽  
Author(s):  
C. M. Allison ◽  
J. K. Hohorst ◽  
B. S. Allison ◽  
D. Konjarek ◽  
T. Bajs ◽  
...  

Immediately after the accident at Fukushima Daiichi, Innovative Systems Software and other members of the international SCDAP Development and Training Program started an assessment of the possible core/vessel damage states of the Fukushima Daiichi Units 1–3. The assessment included a brief review of relevant severe accident experiments and a series of detailed calculations using RELAP/SCDAPSIM. The calculations used a detailed RELAP/SCDAPSIM model of the Laguna Verde BWR vessel and related reactor cooling systems. The Laguna Verde models were provided by the Comision Nacional de Seguridad Nuclear y Salvaguardias, the Mexican nuclear regulatory authority. The initial assessment was originally presented to the International Atomic Energy Agency on March 21 to support their emergency response team and later to our Japanese members to support their Fukushima Daiichi specific analysis and model development.


2016 ◽  
Vol 6 (4) ◽  
pp. 8-17
Author(s):  
Thi Hoa Bui ◽  
Tan Hung Hoang ◽  
Minh Giang Hoang

Performance of  Passive Heat Removal through Steam Generator (PHRS-SG) of VVER-1200/V491 reactor presented in Safety Analysis Report for Ninh Thuan 1 shows that in case of long term station black out (SBO),  VVER-1200/V491 reactor can be cooldown and remained in safety mode at least 24 hours based on PHRS-SG performance. Anyway, long term station blackout along with small break in main coolant pipe of VVER-1200/V491 is assumed to be happening as an extension design condition that needs to be investigated. This study focuses on investigation of SBO along with different size of small break of LOCAs with expectation of finding the range of break size that the reactor is still kept in safety mode during 24 hours. During the investigation, some indicators for fuel damage such as the timing of HA1 actuation or mass of coolant inventory discharged are introduced as necessary information contributed to Severe Accident Management Guideline (SAMG).


Author(s):  
Wei Wei ◽  
Kelin Qi ◽  
Fuchang Shan ◽  
Yanfang Chen ◽  
Fude Guo

This paper describes a mechanistic model of the molten core-concrete interaction (MCCI) process under severe accidents, and selects the Daya-Bay nuclear power plant as the research object to calculate and analyze the process of the MCCI when the station blackout (SBO), or loss of coolant (LOCA) severe accident serial is happened. The calculation results of this procedure are compared with the large-scale analysis programs MELCOR to verify the reasonableness and correctness of the model. The results indicate that the model present in this paper can simulate the MCCI process correctly and reasonably under multi-serial severe accidents.


Sign in / Sign up

Export Citation Format

Share Document