Modeling a Catalytic Combustor for a Steam Reformer in a Methanol Fuel Cell Vehicle

2000 ◽  
Author(s):  
Meena Sundaresan ◽  
Sitaram Ramaswamy ◽  
Robert M. Moore

Abstract Using a fuel other than pure hydrogen in a fuel cell vehicle (FCV) employing a Proton Exchange Membrane (PEM) fuel cell stack typically requires an on-board fuel processor to provide hydrogen-rich fuel to the stack. In the case of methanol as the source fuel, the reformation process typically occurs in a fuel processor that combines a steam reformer plus a catalytic burner (to provide the necessary energy for the endothermic steam reforming reactions to occur). This paper will discuss a model for the catalytic burner in a methanol fuel processor for an Indirect Methanol FCV. The model uses MATLAB/Simulink software and the simulation provides results for both energy efficiency and pollutant formation.

2000 ◽  
Author(s):  
Sitaram Ramaswamy ◽  
Meena Sundaresan ◽  
Robert M. Moore

Abstract Using a fuel other than pure hydrogen in a fuel cell vehicle (FCV) employing a proton exchange membrane (PEM) fuel cell stack typically requires an on-board fuel processor to provide hydrogen-rich fuel to the stack. On board fuel processors that generate hydrogen from on-board liquid methanol (and other Hydrocarbons) have been proposed as possible alternative sources of hydrogen needed by the fuel cell. This paper focuses on a methanol fueled fuel processor that using steam reformation process to generate hydrogen. The reformation process involves a steam reformer and a catalytic burner (which provides the necessary energy for the endothermic steam reforming reactions to occur). This paper focuses on the importance of reformer/burner thermal integration and its impact on the dynamic response of the fuel processor. The model uses MATLAB/Simulink software and the simulation provides results for both dynamic response and energy efficiency.


2015 ◽  
Vol 287 ◽  
pp. 100-107 ◽  
Author(s):  
Mei Yang ◽  
Fengjun Jiao ◽  
Shulian Li ◽  
Hengqiang Li ◽  
Guangwen Chen

2009 ◽  
Vol 32 (11) ◽  
pp. 1739-1747 ◽  
Author(s):  
G. Kolb ◽  
K.-P. Schelhaas ◽  
M. Wichert ◽  
J. Burfeind ◽  
C. Heßke ◽  
...  

Author(s):  
L. G. Do Val ◽  
A. F. Orlando ◽  
C. E. R. Siqueira ◽  
J. Oexmann

A 5 kW proton exchange membrane fuel cell (PEMFC) with a reformer has been installed and tested at the Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Brazil, aiming the experimental determination of its performance and co-generation potential to increase the fuel chemical energy usage. The unit uses a fuel processor to convert energy from natural gas into hydrogen rich reformate. The fuel cell is totally instrumented, supplying data for calculating the overall system efficiency (total efficiency), reformer efficiency, stack efficiency, conversion efficiency (DC/AC), and co-generation potential, at previously set up output powers of 2,5 kW and 4 kW. The paper details the equations required for calculating the parameters, both theoretically, from thermodynamics and electrochemics points of view, and experimentally, from mass and energy balances, comparing the results. Steady state data were taken at 13 different days, resulting in reformer, stack, conversion and total average efficiencies, together with the calculated standard deviation. It was also found that the energy loss in the reformer and in the stack are approximately the same. The co-generation potential was estimated by calculating the heat rejected by the stack and the heat rejected in the reformer, giving a value of 67,5% and 68,9%, respectively for 2,5 kW and 4 kW. Therefore, co-generation can substantially reduce the fuel cell energy cost, and thus increasing the feasibility of its use.


Author(s):  
Robert Radu ◽  
Nicola Zuliani ◽  
Rodolfo Taccani

Proton exchange membrane (PEM) fuel cells based on polybenzimidazole (PBI) polymers and phosphoric acid can be operated at temperature between 120 °C and 180 °C. Reactant humidification is not required and CO content up to 1% in the fuel can be tolerated, only marginally affecting performance. This is what makes high-temperature PEM (HTPEM) fuel cells very attractive, as low quality reformed hydrogen can be used and water management problems are avoided. From an experimental point of view, the major research effort up to now was dedicated to the development and study of high-temperature membranes, especially to development of acid-doped PBI type membranes. Some studies were dedicated to the experimental analysis of single cells and only very few to the development and characterization of high-temperature stacks. This work aims to provide more experimental data regarding high-temperature fuel cell stacks, operated with hydrogen but also with different types of reformates. The main design features and the performance curves obtained with a three-cell air-cooled stack are presented. The stack was tested on a broad temperature range, between 120 and 180 °C, with pure hydrogen and gas mixtures containing up to 2% of CO, simulating the output of a typical methanol reformer. With pure hydrogen, at 180 °C, the considered stack is able to deliver electrical power of 31 W at 1.8 V. With a mixture containing 2% of carbon monoxide, in the same conditions, the performance drops to 24 W. The tests demonstrated that the performance loss caused by operation with reformates, can be partially compensated by a higher stack temperature.


Author(s):  
Søren Juhl Andreasen ◽  
Søren Knudsen Kær

The present work involves the development of a model for predicting the dynamic temperature of a high temperature proton exchange membrane (HTPEM) fuel cell stack. The model is developed to test different thermal control strategies before implementing them in the actual system. The test system consists of a prototype cathode air cooled 30 cell HTPEM fuel cell stack developed at the Institute of Energy Technology at Aalborg University. This fuel cell stack uses PEMEAS Celtec P-1000 membranes and runs on pure hydrogen in a dead-end anode configuration with a purge valve. The cooling of the stack is managed by running the stack at a high stoichiometric air flow. This is possible because of the polybenzimidazole (PBI) fuel cell membranes used and the very low pressure drop in the stack. The model consists of a discrete thermal model dividing the stack into three parts: inlet, middle, and end. The temperature is predicted in these three parts, where they also are measured. The heat balance of the system involves a fuel cell model to describe the heat added by the fuel cells when a current is drawn. Furthermore the model also predicts the temperatures when heating the stack with external heating elements for start-up, heat conduction through stack insulation, cathode air convection, and heating of the inlet gases in the manifold. Various measurements are presented to validate the model predictions of the stack temperatures.


2015 ◽  
Vol 757 ◽  
pp. 133-137
Author(s):  
Yu Jing Su ◽  
Cong Da Lu ◽  
Dong Hui Wen

As many countries increased investment on clean energy research and the automobile industry developed rapidly, fuel cell vehicles hold its own place in the history of the automobile industry gradually. By analyzing large car companies in proton exchange membrane fuel cell (PEMFC) car research and fuel cell car customer requirements, study the design and manufacture of fuel cell vehicles, give some countermeasures for design research.


Sign in / Sign up

Export Citation Format

Share Document