Axis Motion Based System Calibration of an Automated Disassembly Work Cell

2000 ◽  
Author(s):  
Michael M. Bailey-Van Kuren

Abstract This paper presents an approach to calibrate a robotic cell consisting of a robot, a positioning table and a stereo vision system in an autonomous manner. The approach is designed to simplify the error relationships and parameter updates and thus eliminating the need for a large nonlinear search. The accumulation of error in the kinematic model is avoided by calibrating one joint at a time from the manipulator hand to the manipulator base. The error in the manipulator and sensor models are identified by using least squares estimates. The manipulator kinematic model is parameterized by the joint axes position and orientation instead of the Denavit-Hartenberg parameters. This approach leads to a more “user-friendly” interface to the calibration results. The model is derived using screw geometry, resulting in a simple relationship between the joint axis parameters and the path produced by moving a particular joint. The robot model provides an example of a chain of revolute joints while the positioning table provides an example of prismatic joints. Model simplifications result from each of these simplified motions. As with other methods, this formulation produces a four by four homogeneous transformation matrix which defines the motion of any point on the hand of the manipulator in terms of the sensed joint angles. It is shown that each camera can independently estimate the manipulators’ paths using the image data and distances along the path from the manipulator model. Error in position and orientation between the resulting two path estimates identify the relative error between the camera models. It is shown that a solution exists for any set of three or more points generated from one axis.

2017 ◽  
Vol 865 ◽  
pp. 457-462 ◽  
Author(s):  
Vladimir Filaretov ◽  
Alexander Zuev ◽  
Alexander Procenko ◽  
Sergey Melman

This paper considers synthesis method of fault detection system for actuators of robot manipulators based on using of signals fusion from stereo camera, angles sensors of joints and desired values of joint variables. The vision system is used for determining the position of three markers rigidly connected with working tool in the coordinate system associated with the manipulator. The advantage of proposed fault detection system is the simplicity of implementation and precision of detection of typical faults without knowledge about non-linear dynamic of robot and actuators. The results of mathematical simulation on the example of the PUMA-type manipulator using its kinematic model, position and orientation data of markers placed on working tool of manipulator, obtained from vision system fully confirm the efficiency of the proposed fault detection system.


Author(s):  
Shamsul A. Shamsudin ◽  
Andrew P. Murray ◽  
David H. Myszka ◽  
James P. Schmiedeler

This paper presents a kinematic procedure to synthesize planar mechanisms capable of approximating a shape change defined by a general set of curves. These “morphing curves”, referred to as design profiles, differ from each other by a combination of displacement in the plane, shape variation, and notable differences in arc length. Where previous rigid-body shape-change work focused on mechanisms composed of rigid links and revolute joints to approximate curves of roughly equal arc length, this work introduces prismatic joints into the mechanisms in order to produce the different desired arc lengths. A method is presented to inspect and compare the profiles so that the regions are best suited for prismatic joints can be identified. The result of this methodology is the creation of a chain of rigid bodies connected by revolute and prismatic joints that can approximate a set of design profiles.


2018 ◽  
Vol 184 ◽  
pp. 02006
Author(s):  
Mariana Ratiu ◽  
Alexandru Rus ◽  
Monica Loredana Balas

In this paper, we present the first steps in the process of the modeling in ADAMS MBS of MSC software of the mechanical system of an articulated robot, with six revolute joints. The geometric 3D CAD model of the robot, identical to the real model, in the PARASOLID format, is imported into ADAMS/View and then are presented the necessary steps for building the kinematic model of the robot. We conducted this work, in order to help us in our future research, which will consist of kinematic and dynamic analysis and optimization of the robot motion.


Author(s):  
Sunil Kumar Agrawal ◽  
Siyan Li ◽  
Glen Desmier

Abstract The human spine is a sophisticated mechanism consisting of 24 vertebrae which are arranged in a series-chain between the pelvis and the skull. By careful articulation of these vertebrae, a human being achieves fine motion of the skull. The spine can be modeled as a series-chain with 24 rigid links, the vertebrae, where each vertebra has three degrees-of-freedom relative to an adjacent vertebra. From the studies in the literature, the vertebral geometry and the range of motion between adjacent vertebrae are well-known. The objectives of this paper are to present a kinematic model of the spine using the available data in the literature and an algorithm to compute the inter vertebral joint angles given the position and orientation of the skull. This algorithm is based on the observation that the backbone can be described analytically by a space curve which is used to find the joint solutions..


Author(s):  
Peter Racioppo ◽  
Wael Saab ◽  
Pinhas Ben-Tzvi

This paper presents the design and analysis of an underactuated, cable driven mechanism for use in a modular robotic snake. The proposed mechanism is composed of a chain of rigid links that rotate on parallel revolute joints and are actuated by antagonistic cable pairs and a multi-radius pulley. This design aims to minimize the cross sectional area of cable actuated robotic snakes and eliminate undesirable nonlinearities in cable displacements. A distinctive feature of this underactuated mechanism is that it allows planar serpentine locomotion to be accomplished with only two modular units, improving the snake’s ability to conform to desired curvature profiles and minimizing the control complexity involved in snake locomotion. First, the detailed mechanism and cable routing scheme are presented, after which the kinematics and dynamics of the system are derived and a comparative analysis of cable routing schemes is performed, to assist with design synthesis and control. The moment of inertia of the mechanism is modeled, for future use in the implementation of three-dimensional modes of snake motion. Finally, a planar locomotion strategy for snake robots is devised, demonstrated in simulation, and compared with previous studies.


2015 ◽  
Vol 76 (12) ◽  
Author(s):  
F. S. A. Sa’ad ◽  
M. F. Ibrahim ◽  
A. Y. M. Shakaff ◽  
A. Zakaria

Swiftlets are birds contained within the four genera Aerodramus, Hydrochous, Schoutedenapus and Collocalia. To date, the bird nest grading is based on weight, shape and size. Current inspection and grading for raw, edible bird nest were performed visually by expert panels. This conventional method is relying more on human judgments and often biased. A novel hybrid method from Fourier Descriptor (FD) method and Farthest Fourier Point Signature (FFPS) was developed using Charge Coupled Device (CCD) image data to grade bird nest by its shape and size. From the result, the hybrid method was able to differentiate different shape such as super AAA, super and corner grade depending on the Swiftlet species and geographical origin. The Wilks' lambda analysis was invoked to transform and compress the data set comprising of a large number of interconnected variables to a reduced set of varieties. Overall, the vision system was able to correctly classify 92.6 % of the super AAA, super and Corner shaped grades using the combined FD and FFPS features.


Robotica ◽  
2013 ◽  
Vol 32 (6) ◽  
pp. 889-905 ◽  
Author(s):  
Chin-Hsing Kuo ◽  
Jian S. Dai ◽  
Giovanni Legnani

SUMMARYA non-overconstrained three-DOF parallel orientation mechanism that is kinematically equivalent to the Agile Eye is presented in this paper. The output link (end-effector) of the mechanism is connected to the base by one spherical joint and by another three identical legs. Each leg comprises of, in turns from base, a revolute joint, a universal joint, and three prismatic joints. The three lower revolute joints are active joints, while all other joints are passive ones. Based on a special configuration, some three projective angles of the end-effector coordinates are fully decoupled with respect to the input actuated joints, that is, by actuating any revolute joint the end-effector rotates in such a way that the corresponding projective angle changes with the same angular displacement. The fully decoupled motion is analyzed geometrically and proved theoretically. Besides, the inverse and direct kinematics solutions of the mechanism are provided based on the geometric reasoning and theoretical proof.


Robotica ◽  
2021 ◽  
pp. 1-13
Author(s):  
G Carbone ◽  
M Ceccarelli ◽  
C. E. Capalbo ◽  
G Caroleo ◽  
C Morales-Cruz

Abstract This paper presents a numerical and experimental validation of ExoFing, a two-degrees-of-freedom finger mechanism exoskeleton. The main functionalities of this device are investigated by focusing on its kinematic model and by computing its main operation characteristics via numerical simulations. Experimental tests are designed and carried out for validating both the engineering feasibility and effectiveness of the ExoFing system aiming at achieving a human index finger motion assistance with cost-oriented and user-friendly features.


2015 ◽  
Vol 799-800 ◽  
pp. 1058-1062
Author(s):  
Alexey Katsurin ◽  
Denis Gerasimenko

This paper describes the system of telecontrol with two manipulators, that allows to grasp synchronously the object, position and orientation of which is determined by the vision system. The proposed algorithm of the computing system forms the control signals for all drives of manipulators. The simulation results confirm the efficiency of this algorithm and the overall system.


2013 ◽  
Vol 11 (02) ◽  
pp. 1250024 ◽  
Author(s):  
ALEXANDRA HERZOG ◽  
BJÖRN VOSS ◽  
DANIELA KEILBERG ◽  
EDINA HOT ◽  
LOTTE SØGAARD-ANDERSEN ◽  
...  

The extraction of fluorescence intensity profiles of single cells from image data is a common challenge in cell biology. The manual segmentation of cells, the extraction of cell orientation and finally the extraction of intensity profiles are time-consuming tasks. This article proposes a routine for the segmentation of single rod-shaped cells (i.e. without neighboring cells in a distance of the cell length) from image data combined with an extraction of intensity distributions along the longitudinal cell axis under the aggravated conditions of (i) a low spatial resolution and (ii) lacking information on the imaging system i.e. the point spread function and signal-to-noise ratio. The algorithm named cipsa transfers a new approach from particle streak velocimetry to cell classification interpreting the rod-shaped as streak-like structures. An automatic reduction of systematic errors such as photobleaching and defocusing is included to guarantee robustness of the proposed approach under the described conditions and to the convenience of end-users unfamiliar with image processing. Performance of the algorithm has been tested on image sequences with high noise level produced by an overlay of different error sources. The developed algorithm provides a user-friendly, stand-alone procedure.


Sign in / Sign up

Export Citation Format

Share Document