EDIBLE BIRD NEST SHAPE INSPECTION USING FOURIER DESCRIPTOR (FD) AND FARTHEST FOURIER POINT SIGNATURE (FFPS) METHOD

2015 ◽  
Vol 76 (12) ◽  
Author(s):  
F. S. A. Sa’ad ◽  
M. F. Ibrahim ◽  
A. Y. M. Shakaff ◽  
A. Zakaria

Swiftlets are birds contained within the four genera Aerodramus, Hydrochous, Schoutedenapus and Collocalia. To date, the bird nest grading is based on weight, shape and size. Current inspection and grading for raw, edible bird nest were performed visually by expert panels. This conventional method is relying more on human judgments and often biased. A novel hybrid method from Fourier Descriptor (FD) method and Farthest Fourier Point Signature (FFPS) was developed using Charge Coupled Device (CCD) image data to grade bird nest by its shape and size. From the result, the hybrid method was able to differentiate different shape such as super AAA, super and corner grade depending on the Swiftlet species and geographical origin. The Wilks' lambda analysis was invoked to transform and compress the data set comprising of a large number of interconnected variables to a reduced set of varieties. Overall, the vision system was able to correctly classify 92.6 % of the super AAA, super and Corner shaped grades using the combined FD and FFPS features.

2021 ◽  
Vol 7 (9) ◽  
pp. 177
Author(s):  
Loris Nanni ◽  
Stefano Ghidoni ◽  
Sheryl Brahnam

Features play a crucial role in computer vision. Initially designed to detect salient elements by means of handcrafted algorithms, features now are often learned using different layers in convolutional neural networks (CNNs). This paper develops a generic computer vision system based on features extracted from trained CNNs. Multiple learned features are combined into a single structure to work on different image classification tasks. The proposed system was derived by testing several approaches for extracting features from the inner layers of CNNs and using them as inputs to support vector machines that are then combined by sum rule. Several dimensionality reduction techniques were tested for reducing the high dimensionality of the inner layers so that they can work with SVMs. The empirically derived generic vision system based on applying a discrete cosine transform (DCT) separately to each channel is shown to significantly boost the performance of standard CNNs across a large and diverse collection of image data sets. In addition, an ensemble of different topologies taking the same DCT approach and combined with global mean thresholding pooling obtained state-of-the-art results on a benchmark image virus data set.


2019 ◽  
Vol 2019 (1) ◽  
pp. 360-368
Author(s):  
Mekides Assefa Abebe ◽  
Jon Yngve Hardeberg

Different whiteboard image degradations highly reduce the legibility of pen-stroke content as well as the overall quality of the images. Consequently, different researchers addressed the problem through different image enhancement techniques. Most of the state-of-the-art approaches applied common image processing techniques such as background foreground segmentation, text extraction, contrast and color enhancements and white balancing. However, such types of conventional enhancement methods are incapable of recovering severely degraded pen-stroke contents and produce artifacts in the presence of complex pen-stroke illustrations. In order to surmount such problems, the authors have proposed a deep learning based solution. They have contributed a new whiteboard image data set and adopted two deep convolutional neural network architectures for whiteboard image quality enhancement applications. Their different evaluations of the trained models demonstrated their superior performances over the conventional methods.


2020 ◽  
Vol 33 (6) ◽  
pp. 838-844
Author(s):  
Jan-Helge Klingler ◽  
Ulrich Hubbe ◽  
Christoph Scholz ◽  
Florian Volz ◽  
Marc Hohenhaus ◽  
...  

OBJECTIVEIntraoperative 3D imaging and navigation is increasingly used for minimally invasive spine surgery. A novel, noninvasive patient tracker that is adhered as a mask on the skin for 3D navigation necessitates a larger intraoperative 3D image set for appropriate referencing. This enlarged 3D image data set can be acquired by a state-of-the-art 3D C-arm device that is equipped with a large flat-panel detector. However, the presumably associated higher radiation exposure to the patient has essentially not yet been investigated and is therefore the objective of this study.METHODSPatients were retrospectively included if a thoracolumbar 3D scan was performed intraoperatively between 2016 and 2019 using a 3D C-arm with a large 30 × 30–cm flat-panel detector (3D scan volume 4096 cm3) or a 3D C-arm with a smaller 20 × 20–cm flat-panel detector (3D scan volume 2097 cm3), and the dose area product was available for the 3D scan. Additionally, the fluoroscopy time and the number of fluoroscopic images per 3D scan, as well as the BMI of the patients, were recorded.RESULTSThe authors compared 62 intraoperative thoracolumbar 3D scans using the 3D C-arm with a large flat-panel detector and 12 3D scans using the 3D C-arm with a small flat-panel detector. Overall, the 3D C-arm with a large flat-panel detector required more fluoroscopic images per scan (mean 389.0 ± 8.4 vs 117.0 ± 4.6, p < 0.0001), leading to a significantly higher dose area product (mean 1028.6 ± 767.9 vs 457.1 ± 118.9 cGy × cm2, p = 0.0044).CONCLUSIONSThe novel, noninvasive patient tracker mask facilitates intraoperative 3D navigation while eliminating the need for an additional skin incision with detachment of the autochthonous muscles. However, the use of this patient tracker mask requires a larger intraoperative 3D image data set for accurate registration, resulting in a 2.25 times higher radiation exposure to the patient. The use of the patient tracker mask should thus be based on an individual decision, especially taking into considering the radiation exposure and extent of instrumentation.


2019 ◽  
Vol 11 (10) ◽  
pp. 1157 ◽  
Author(s):  
Jorge Fuentes-Pacheco ◽  
Juan Torres-Olivares ◽  
Edgar Roman-Rangel ◽  
Salvador Cervantes ◽  
Porfirio Juarez-Lopez ◽  
...  

Crop segmentation is an important task in Precision Agriculture, where the use of aerial robots with an on-board camera has contributed to the development of new solution alternatives. We address the problem of fig plant segmentation in top-view RGB (Red-Green-Blue) images of a crop grown under open-field difficult circumstances of complex lighting conditions and non-ideal crop maintenance practices defined by local farmers. We present a Convolutional Neural Network (CNN) with an encoder-decoder architecture that classifies each pixel as crop or non-crop using only raw colour images as input. Our approach achieves a mean accuracy of 93.85% despite the complexity of the background and a highly variable visual appearance of the leaves. We make available our CNN code to the research community, as well as the aerial image data set and a hand-made ground truth segmentation with pixel precision to facilitate the comparison among different algorithms.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
◽  
Elmar Kotter ◽  
Luis Marti-Bonmati ◽  
Adrian P. Brady ◽  
Nandita M. Desouza

AbstractBlockchain can be thought of as a distributed database allowing tracing of the origin of data, and who has manipulated a given data set in the past. Medical applications of blockchain technology are emerging. Blockchain has many potential applications in medical imaging, typically making use of the tracking of radiological or clinical data. Clinical applications of blockchain technology include the documentation of the contribution of different “authors” including AI algorithms to multipart reports, the documentation of the use of AI algorithms towards the diagnosis, the possibility to enhance the accessibility of relevant information in electronic medical records, and a better control of users over their personal health records. Applications of blockchain in research include a better traceability of image data within clinical trials, a better traceability of the contributions of image and annotation data for the training of AI algorithms, thus enhancing privacy and fairness, and potentially make imaging data for AI available in larger quantities. Blockchain also allows for dynamic consenting and has the potential to empower patients and giving them a better control who has accessed their health data. There are also many potential applications of blockchain technology for administrative purposes, like keeping track of learning achievements or the surveillance of medical devices. This article gives a brief introduction in the basic technology and terminology of blockchain technology and concentrates on the potential applications of blockchain in medical imaging.


2005 ◽  
Author(s):  
D. Strobl ◽  
J. Raggam
Keyword(s):  

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Lukman E. Mansuri ◽  
D.A. Patel

PurposeHeritage is the latent part of a sustainable built environment. Conservation and preservation of heritage is one of the United Nations' (UN) sustainable development goals. Many social and natural factors seriously threaten heritage structures by deteriorating and damaging the original. Therefore, regular visual inspection of heritage structures is necessary for their conservation and preservation. Conventional inspection practice relies on manual inspection, which takes more time and human resources. The inspection system seeks an innovative approach that should be cheaper, faster, safer and less prone to human error than manual inspection. Therefore, this study aims to develop an automatic system of visual inspection for the built heritage.Design/methodology/approachThe artificial intelligence-based automatic defect detection system is developed using the faster R-CNN (faster region-based convolutional neural network) model of object detection to build an automatic visual inspection system. From the English and Dutch cemeteries of Surat (India), images of heritage structures were captured by digital camera to prepare the image data set. This image data set was used for training, validation and testing to develop the automatic defect detection model. While validating this model, its optimum detection accuracy is recorded as 91.58% to detect three types of defects: “spalling,” “exposed bricks” and “cracks.”FindingsThis study develops the model of automatic web-based visual inspection systems for the heritage structures using the faster R-CNN. Then it demonstrates detection of defects of spalling, exposed bricks and cracks existing in the heritage structures. Comparison of conventional (manual) and developed automatic inspection systems reveals that the developed automatic system requires less time and staff. Therefore, the routine inspection can be faster, cheaper, safer and more accurate than the conventional inspection method.Practical implicationsThe study presented here can improve inspecting the built heritages by reducing inspection time and cost, eliminating chances of human errors and accidents and having accurate and consistent information. This study attempts to ensure the sustainability of the built heritage.Originality/valueFor ensuring the sustainability of built heritage, this study presents the artificial intelligence-based methodology for the development of an automatic visual inspection system. The automatic web-based visual inspection system for the built heritage has not been reported in previous studies so far.


Solid Earth ◽  
2016 ◽  
Vol 7 (2) ◽  
pp. 481-492 ◽  
Author(s):  
Faisal Khan ◽  
Frieder Enzmann ◽  
Michael Kersten

Abstract. Image processing of X-ray-computed polychromatic cone-beam micro-tomography (μXCT) data of geological samples mainly involves artefact reduction and phase segmentation. For the former, the main beam-hardening (BH) artefact is removed by applying a best-fit quadratic surface algorithm to a given image data set (reconstructed slice), which minimizes the BH offsets of the attenuation data points from that surface. A Matlab code for this approach is provided in the Appendix. The final BH-corrected image is extracted from the residual data or from the difference between the surface elevation values and the original grey-scale values. For the segmentation, we propose a novel least-squares support vector machine (LS-SVM, an algorithm for pixel-based multi-phase classification) approach. A receiver operating characteristic (ROC) analysis was performed on BH-corrected and uncorrected samples to show that BH correction is in fact an important prerequisite for accurate multi-phase classification. The combination of the two approaches was thus used to classify successfully three different more or less complex multi-phase rock core samples.


2018 ◽  
Vol 7 (2.20) ◽  
pp. 291 ◽  
Author(s):  
B Saroja ◽  
A Selwin Mich Priyadharson

Colon or Bowel or Colorectal Cancer (CRC) is commonly determined by diagnosing a sample of colon tissue and further analysed by medical imaging. The colon tissue classification method count on specific changes between texture features extracted from benign and malignant regions. The variations in the image acquisition methods effects the colon tissue analysis. In this paper, an Upgraded Spatial Gray Level Dependence Matrices (U-SGLDM) is emphasized to extract textural features. The licensed image set of all applicable types of tissues within colon cancer are used for experimentation. Several texture feature sets are extracted to show the significant differences among the eight colon cancer biopsy images in the image data set. The fractal dimension-Hurst Coefficient is added to U-SGLDM for long range assessment. The Prominence of the analysis evoked in the representation of histopathological image structure over longer periods.  


Sign in / Sign up

Export Citation Format

Share Document