Target Setting for Vehicle Side Impact Using a Statistical Approach

Author(s):  
Anindya Deb ◽  
Nripen K. Saha

Designing a vehicle for superior side impact performance is an important consideration in automotive product development. The challenges involved in this design are many as side impact is a relatively short duration event and interaction between the crash test dummy and vehicle side structure including side airbag (if present) is involved, and engagement of the moving deformable barrier with the stiffer underbody of a car may not always take place (unlike in the case of frontal NCAP test in which the front rails will necessarily play a major role in energy-absorption). The safety engineer nevertheless has to set targets for relevant side crash-related variables in the initial phase of design when very limited information on vehicle structure is available. As shown in the present study, linear regression-based relationships can be utilized for setting quantitative targets for structural response and packaging-related variables for side impact safety design of a new vehicle.

2013 ◽  
Vol 456 ◽  
pp. 38-42
Author(s):  
Ai Hong Gong ◽  
Ming Mao Hu

Based on the finite element (FE) model and Moving Deformable barrier (MDB) model of a car side impact, the virtual test of the side impact was conducted with HYPERWORK software according to Euro-NCAP regulation. Then the impact performance was evaluated in both deformation and response curve of the car body, and the problem of the crashworthiness in designing the side structure was analyzed. Finally, the structure improvement with CATIA for the side crashworthiness was proposed. Keywords: CAE analyze, Side impact, Improvement


Author(s):  
Yibing Shi ◽  
Jianping Wu ◽  
Guy S. Nusholtz

The optimal restraint for minimizing the peak thoracic compression of the SID-IIs side crash test dummy subjected to a prescribed impact is studied using a linear spring-mass model. This model consists of the thoracic and pelvic masses and three springs which connect the masses and interface them with an impacting surface through the restraint. The problem is posed as an optimal control problem, with the restraint, which could be any physical structure (e.g., an airbag) operating in a finite allowable space, treated as a displacement control element. Via an assumption of the linearity of the dummy model and a discretization scheme, the problem is approximated and transformed into a linear programming problem for numerical solution. Numerical solutions are obtained under different prescribed impacting surface motion histories, different restraint space values, and constraints on dummy responses. Results show that the general characteristics of the optimal restraint response is a rapid ramp up in velocity in the very beginning of the event, followed by a period of lower level of loading where the thoracic compression builds up, and then an approximately constant acceleration to maintain the compression. The corresponding theoretically minimum thoracic compression values under the various conditions studied are presented.


Author(s):  
Keith Friedman ◽  
Khanh Bui ◽  
John Hutchinson

Vehicle door latch performance testing presently utilizes uniaxial quasi-static loading conditions. Current technology enables sophisticated virtual testing of a broad range of systems. Door latch failures have been observed in vehicles under a variety of conditions. Typically, these conditions involve multi-axis loading conditions. The loading conditions presented during rollovers on passenger vehicle side door latches have not been published. Rollover crash test results, rollover crashes, and physical Federal Motor Vehicle Safety Standard (FMVSS) 206 latch testing results are reviewed. The creation and validation of a passenger vehicle door latch model is described. The multi-axis loading conditions observed in virtual rollover testing at the latch location are characterized and applied to the virtual testing of a latch in the secondary latch position. The results are then compared with crash test and real world rollover results for the same latch. The results indicate that a door latch that meets the secondary latch position requirements may fail at loads substantially below the FMVSS 206 uniaxial failure loads. In the side impact mode, risks associated with door handle designs and the potential for inertial release can be considered prior to manufacturing with virtual testing. An example case showing the effects of material and spring selection illustrates the potential issues that can be detected in advance of manufacturing. The findings suggest the need for re-examining the relevance of existing door latch testing practices in light of the prevalence of rollover impacts and other impact conditions in today's vehicle fleet environment.


2000 ◽  
Author(s):  
Krishnakanth Aekbote ◽  
Srinivasan Sundararajan ◽  
Joseph A. Prater ◽  
Joe E. Abramczyk

Abstract A sled based test method for simulating full-scale EEVC (European) side impact crash test is described in this paper. Both the dummy (Eurosid-1) and vehicle structural responses were simulated, and validated with the full-scale crash tests. The effect of various structural configurations such as foam filled structures, material changes, rocker and b-pillar reinforcements, advanced door design concepts, on vehicle performance can be evaluated using this methodology at the early stages of design. In this approach, an actual EEVC honeycomb barrier and a vehicle body-in-white with doors were used. The under-hood components (engine, transmission, radiator, etc.), tires, and the front/rear suspensions were not included in the vehicle assembly, but they were replaced by lumped masses (by adding weight) in the front and rear of the vehicle, to maintain the overall vehicle weight. The vehicle was mounted on the sled by means of a supporting frame at the front/rear suspension attachments, and was allowed to translate in the impact direction only. At the start of the simulation, an instrumented Eurosid-1 dummy was seated inside the vehicle, while maintaining the same h-point location, chest angle, and door-to-dummy lateral distance, as in a full-scale crash test. The EEVC honeycomb barrier was mounted on another sled, and care was taken to ensure that weight, and the relative impact location to the vehicle, was maintained the same as in full-scale crash test. The Barrier impacted the stationary vehicle at an initial velocity of approx. 30 mph. The MDB and the vehicle were allowed to slide for about 20 inches from contact, before they were brought to rest. Accelerometers were mounted on the door inner sheet metal and b-pillar, rocker, seat cross-members, seats, and non-struck side rocker. The Barrier was instrumented with six load cells to monitor the impact force at different sections, and an accelerometer for deceleration measurement. The dummy, vehicle, and the Barrier responses showed good correlation when compared to full-scale crash tests. The test methodology was also used in assessing the performance/crashworthiness of various sub-system designs of the side structure (A-pillar, B-pillar, door, rocker, seat cross-members, etc.) of a passenger car. This paper concerns itself with the development and validation of the test methodology only, as the study of various side structure designs and evaluations are beyond the scope of this paper.


2019 ◽  
Vol 285 ◽  
pp. 00022
Author(s):  
Krzysztof Wilde ◽  
Arkadiusz Tilsen ◽  
Stanisław Burzyński ◽  
Wojciech Witkowski

The article describes a comparison of two general methods of occupants safety estimation based on a numerical examples. The so-called direct method is mainly based on the HIC (Head Injury Criterion) of a crash test dummy in a vehicle with passive safety system while the indirect method uses a European standard approach to estimate impact severity level.


Proceedings ◽  
2020 ◽  
Vol 49 (1) ◽  
pp. 38
Author(s):  
Syed Imam ◽  
Heather Driscoll ◽  
Keith Winwood ◽  
Prabhuraj Venkatraman ◽  
Tom Allen

World Rugby™ permits players to wear padded clothing meeting the requirements of Regulation-12, which limits density, thickness and impact performance. Due to non-uniform geometry, measuring the density of padding can be challenging and provides limited information on mechanical properties. This study investigated how well density could predict the impact performance of rugby padding, whilst reviewing compliance parameters as alternatives. Eleven samples of rugby padding, plus one control material, were tested for compliance, then impacted at energies of 4.9, 9.8 and 14.7 J using the setup as defined in Regulation-12, and finally cut to calculate density. The density and compliance parameters were correlated against peak impact accelerations using a Spearman’s rank test. Density was not significantly correlated with peak acceleration at any energy level, with compliance tests significantly correlated with impact acceleration at only 4.9 J.


2011 ◽  
Vol 486 ◽  
pp. 274-278
Author(s):  
Rui Yang ◽  
Jia Qian Li

Based on the analysis of automobile bumper crash, and combined with the features of the bumper absorbing energy, a rig for bumper crash test was developed. The rig has advanced features of small size, wide-range of usage and arbitrary movement. The frontal and side crash can be tested according to different models and materials, and, hence, to provide a viable test method to study the general crash performance and energy absorption situation of the bumper, and reliable test data for investigation of automotive passive safety. In this paper, the structure and design of the rig is presented fist, followed by the working principles of the experiment system and theoretical analysis of the experimental process. An experiment was conducted which proved the successful development of the experimental system.


2008 ◽  
Vol 22 (09n11) ◽  
pp. 1766-1773
Author(s):  
YOUNGHAN YOUN ◽  
JEONG-SEO KOO

The complete evaluation of the side vehicle structure and the occupant protection is only possible by means of the full scale side impact crash test. But, auto part manufacturers such as door trim makers can not conduct the test especially when the vehicle is under the developing process. The main objective of this study is to obtain the design guidelines by a simple component level impact test. The relationship between the target absorption energy and impactor speed were examined using the energy absorbed by the door trim. Since each different vehicle type required different energy levels on the door trim. A simple impact test method was developed to estimate abdominal injury by measuring reaction force of the impactor. The reaction force will be converted to a certain level of the energy by the proposed formula. The target of absorption energy for door trim only and the impact speed of simple impactor are derived theoretically based on the conservation of energy. With calculated speed of dummy and the effective mass of abdomen, the energy allocated in the abdomen area of door trim was calculated. The impactor speed can be calculated based on the equivalent energy of door trim absorbed during the full crash test. With the proposed design procedure for the door trim by a simple impact test method was demonstrated to evaluate the abdominal injury. This paper describes a study that was conducted to determine sensitivity of several design factors for reducing abdominal injury values using the matrix of orthogonal array method. In conclusion, with theoretical considerations and empirical test data, the main objective, standardization of door trim design using the simple impact test method was established.


Sign in / Sign up

Export Citation Format

Share Document