A Wind-Tunnel Study of Thermally Stratified Boundary Layers

Author(s):  
Marcio Cataldi ◽  
Juliana B. R. Loureiro ◽  
Atila P. Silva Freire

The objective of this work is to develop, in a wind tunnel environment, boundary layers with different states of development that simulate the structure present in the atmospheric boundary layer. The work analyses the dymamic and thermal characteristics of different types of thick, artificially-generated, turbulent boundary layers. The thermal boundary layer is obtained by two methods: wall surface heating, made through electrical resistance, can furnish an increase in wall temperature of up to 100 °C above the ambient temparatures and can be applied over a 5000 mm long surface with a controlled variation of 2 °C. The main flow heating is obtained by forcing the flow pass through an array of copper wires whose elements can be heated individually. The main flow can be heated up to 100 °C. The whole system can then be used to produce unstable, neutral and stable boundary layers. The parameters of the thermal boundary layers are qualified according to the following parameters: growth, structure, equilibrium, turbulent transport of heat and energy spectrum. The paper describes in detail the experimental arrangements, including the geometry of the wind tunnel and the instrumentation.

Author(s):  
Christian Eichler ◽  
Thomas Sattelmayer

Premixed combustion of hydrogen-rich mixtures involves the risk of flame flashback through wall boundary layers. For laminar flow conditions, the flashback mechanism is well understood and is usually correlated by a critical velocity gradient at the wall. Turbulent transport inside the boundary layer considerably increases the flashback propensity. Only tube burner setups have been investigated in the past and thus turbulent flashback limits were only derived for a fully-developed Blasius wall friction profile. For turbulent flows, details of the flame propagation in proximity to the wall remain unclear. This paper presents results from a new experimental combustion rig, apt for detailed optical investigations of flame flashbacks in a turbulent wall boundary layer developing on a flat plate and being subject to an adjustable pressure gradient. Turbulent flashback limits are derived from the observed flame position inside the measurement section. The fuels investigated cover mixtures of methane, hydrogen and air at various mixing ratios. The associated wall friction distributions are determined by RANS computations of the flow inside the measurement section with fully resolved boundary layers. Consequently, the interaction between flame back pressure and incoming flow is not taken into account explicitly, in accordance with the evaluation procedure used for tube burner experiments. The results are compared to literature values and the critical gradient concept is reviewed in light of the new data.


2014 ◽  
Vol 7 (6) ◽  
pp. 2599-2611 ◽  
Author(s):  
Y. Zhang ◽  
Z. Gao ◽  
D. Li ◽  
Y. Li ◽  
N. Zhang ◽  
...  

Abstract. Experimental data from four field campaigns are used to explore the variability of the bulk Richardson number of the entire planetary boundary layer (PBL), Ribc, which is a key parameter for calculating the PBL height (PBLH) in numerical weather and climate models with the bulk Richardson number method. First, the PBLHs of three different thermally stratified boundary layers (i.e., strongly stable boundary layers, weakly stable boundary layers, and unstable boundary layers) from the four field campaigns are determined using the turbulence method, the potential temperature gradient method, the low-level jet method, and the modified parcel method. Then for each type of boundary layer, an optimal Ribc is obtained through linear fitting and statistical error minimization methods so that the bulk Richardson method with this optimal Ribc yields similar estimates of PBLHs as the methods mentioned above. We find that the optimal Ribc increases as the PBL becomes more unstable: 0.24 for strongly stable boundary layers, 0.31 for weakly stable boundary layers, and 0.39 for unstable boundary layers. Compared with previous schemes that use a single value of Ribc in calculating the PBLH for all types of boundary layers, the new values of Ribc proposed by this study yield more accurate estimates of PBLHs.


2017 ◽  
Vol 817 ◽  
pp. 80-121 ◽  
Author(s):  
Elena Marensi ◽  
Pierre Ricco ◽  
Xuesong Wu

The nonlinear response of a compressible boundary layer to unsteady free-stream vortical fluctuations of the convected-gust type is investigated theoretically and numerically. The free-stream Mach number is assumed to be of $O(1)$ and the effects of compressibility, including aerodynamic heating and heat transfer at the wall, are taken into account. Attention is focused on low-frequency perturbations, which induce strong streamwise-elongated components of the boundary-layer disturbances, known as streaks or Klebanoff modes. The amplitude of the disturbances is intense enough for nonlinear interactions to occur within the boundary layer. The generation and nonlinear evolution of the streaks, which acquire an $O(1)$ magnitude, are described on a self-consistent and first-principle basis using the mathematical framework of the nonlinear unsteady compressible boundary-region equations, which are derived herein for the first time. The free-stream flow is studied by including the boundary-layer displacement effect and the solution is matched asymptotically with the boundary-layer flow. The nonlinear interactions inside the boundary layer drive an unsteady two-dimensional flow of acoustic nature in the outer inviscid region through the displacement effect. A close analogy with the flow over a thin oscillating airfoil is exploited to find analytical solutions. This analogy has been widely employed to investigate steady flows over boundary layers, but is considered herein for the first time for unsteady boundary layers. In the subsonic regime the perturbation is felt from the plate in all directions, while at supersonic speeds the disturbance only propagates within the dihedron defined by the Mach line. Numerical computations are performed for carefully chosen parameters that characterize three practical applications: turbomachinery systems, supersonic flight conditions and wind tunnel experiments. The results show that nonlinearity plays a marked stabilizing role on the velocity and temperature streaks, and this is found to be the case for low-disturbance environments such as flight conditions. Increasing the free-stream Mach number inhibits the kinematic fluctuations but enhances the thermal streaks, relative to the free-stream velocity and temperature respectively, and the overall effect of nonlinearity becomes weaker. An abrupt deviation of the nonlinear solution from the linear one is observed in the case pertaining to a supersonic wind tunnel. Large-amplitude thermal streaks and the strong abrupt stabilizing effect of nonlinearity are two new features of supersonic flows. The present study provides an accurate signature of nonlinear streaks in compressible boundary layers, which is indispensable for the secondary instability analysis of unsteady streaky boundary-layer flows.


1964 ◽  
Vol 68 (639) ◽  
pp. 198-198 ◽  
Author(s):  
P. Bradshaw

Morgan has described a spatial instability in the flow through screens or grids of small open-area ratio. Head and Rechenberg and others have observed large span-wise variations in the thickness and shear stress of nominally two-dimensional boundary layers on flat plates and aerofoils in wind tunnels. It now appears that these spanwise variations are caused by the instability of flow through the screens. The jets of air issuing from the pores of the screen attempt to entrain more air by the usual mixing processes, but can only entrain it from each other, so that groups of jets coalesce in rather random (steady) patterns determined by small irregularities in the weave. The resulting variations in axial velocity are virtually eliminated by the wind tunnel contraction, but variations in flow direction are not so greatly reduced: a theoretical analysis shows that the observed variations of boundary-layer thickness, which often reach ± 10 per cent of the mean, can be produced by directional variations in the working section of the order of ± 1/20 deg, with a spanwise wavelength of the same order as the boundary-layer thickness.


Sign in / Sign up

Export Citation Format

Share Document