An H-Adaptive Finite Element Model for Constructing 3-D Wind Fields

Author(s):  
Xiuling Wang ◽  
Darrell W. Pepper ◽  
Yitung Chen ◽  
Hsuan-Tsung Hsieh

Calculating wind velocities accurately and efficiently is the key to successfully assessing wind fields over irregular terrain. In the finite element method, decreasing individual element size (increasing the mesh density) and increasing shape function interpolation order are known to improve accuracy. However, computational speed is typically impaired, along with tremendous increases in computational storage. This problem becomes acutely obvious when dealing with atmospheric flows. An h-adaptation scheme, which allows one to start with a coarse mesh that ultimately refines in high gradients regions, can obtain high accuracy at reduced computational time and storage. H-adaptation schemes have been shown to be very effective in compressible flows for capturing shocks [1], but have found limited use in atmospheric wind field simulations [2]. In this paper, an h-adaptive finite element model has been developed that refines and unrefines element regions based upon velocity gradients. An objective analysis technique is applied to generate a mass consistent 3-D flow field utilizing sparse meteorological data. Results obtained from the PSU/NCAR MM5 atmospheric model are used to establish the initial velocity field in lieu of available meteorological tower data. Wind field estimations for the northwest area of Nevada are currently being examined as potential locations for wind turbines.

Author(s):  
Daniele Botto ◽  
Stefano Zucca ◽  
Muzio M. Gola

The life monitoring concept needs on-line calculation to evaluate stresses and temperatures on aircraft engine components, in order to asses fatigue damage accumulation and residual life. Due to the amount of computational time required it is not possible for a full finite element model to operate in real time using the on-board CPU. Stresses and temperatures are then evaluated by using simplified algorithms. In the present work Guyan reduction and component mode synthesis have been applied to a thermal finite element model, including the cooling stream flow — the so called advection network — in order to reduce the size of the solving equation system. The appropriate mathematical formulation for the advection network reduction has been developed. Two reduction methods have been performed, discussed and subsequently applied to a thermal finite element model of a real low pressure turbine disk. The reduced system includes both the disk and the correlated fluid network model, simulating turbine secondary air system. The finite element model is axi-symmetric, with constant convective coefficients. Results of time integration for the reduced and the complete models have been compared. Results show that the proposed techniques gives models with a reduced number of degrees of freedom and at the same time good accuracy in temperature calculation. The reduced models are then suitable for real time computation.


Author(s):  
Darrell W. Pepper ◽  
Yitung Chen ◽  
Joseph M. Lombardo

A Petrov-Galerkin finite element model that employs local mesh adaptation is being developed to determine potential wind energy sites within the state of Nevada. Meteorological data collected from various private, county, city, and government agencies are used to generate diagnostic flow fields, which subsequently provide initial conditions for the prognostic solution of the time-dependent equations of motion and species transport. The model runs on a multiprocessor SGI Onyx 3800. Results of the data collection, including wind energy site forecasts, will be made available on the web when the assessment for the entire state is completed.


2010 ◽  
Vol 60 (4) ◽  
pp. 835-850 ◽  
Author(s):  
David R. Munday ◽  
David P. Marshall ◽  
Matthew D. Piggott

2009 ◽  
Vol 48 (3) ◽  
pp. 580-599 ◽  
Author(s):  
Darrell W. Pepper ◽  
Xiuling Wang

Abstract An h-adaptive, mass-consistent finite-element model (FEM) has been developed for constructing 3D wind fields over irregular terrain utilizing sparse meteorological tower data. The element size in the computational domain is dynamically controlled by an a posteriori error estimator based on the L2 norm. In the h-adaptive FEM algorithm, large element sizes are typically associated with smooth flow regions and small errors; small element sizes are attributed to fast-changing flow regions and large errors. The adaptive procedure employed in this model uses mesh refinement–unrefinement to satisfy error criteria. Results are presented for wind fields using sparse data obtained from two regions within Nevada: 1) the Nevada Test Site, located approximately 65 mi (1 mi ≈ 1.6 km) northwest of Las Vegas, and 2) the central region of Nevada, about 100 mi southeast of Reno.


Sign in / Sign up

Export Citation Format

Share Document