wind field
Recently Published Documents


TOTAL DOCUMENTS

1570
(FIVE YEARS 397)

H-INDEX

52
(FIVE YEARS 6)

2022 ◽  
Vol 22 (1) ◽  
pp. 419-439
Author(s):  
Lixing Shen ◽  
Chuanfeng Zhao ◽  
Xingchuan Yang ◽  
Yikun Yang ◽  
Ping Zhou

Abstract. The 2019 Australian mega fires were unprecedented considering their intensity and consistency. There has been much research on the environmental and ecological effects of these mega fires, most of which focused on the effect of huge aerosol loadings and the ecological devastation. Sea land breeze (SLB) is a regional thermodynamic circulation closely related to coastal pollution dispersion, yet few have looked into how it is influenced by different types of aerosols transported from either nearby or remote areas. Mega fires provide an optimal scenario of large aerosol emissions. Near the coastal site of Brisbane Archerfield during January 2020, when mega fires were the strongest, reanalysis data from Modern-Era Retrospective analysis for Research and Applications version 2 (MERRA-2) showed that mega fires did release huge amounts of aerosols, making aerosol optical depth (AOD) of total aerosols, black carbon (BC) and organic carbon (OC) approximately 240 %, 425 % and 630 % of the averages in other non-fire years. Using 20 years' wind observations of hourly time resolution from a global observation network managed by the National Oceanic and Atmospheric Administration (NOAA), we found that the SLB day number during that month was only 4, accounting for 33.3 % of the multi-years' average. The land wind (LW) speed and sea wind (SW) speed also decreased by 22.3 % and 14.8 % compared with their averages respectively. Surprisingly, fire spot and fire radiative power (FRP) analysis showed that heating effects and aerosol emission of the nearby fire spots were not the main causes of the local SLB anomaly, while the remote transport of aerosols from the fire centre was mainly responsible for the decrease of SW, which was partially offset by the heating effect of nearby fire spots and the warming effect of long-range transported BC and CO2. The large-scale cooling effect of aerosols on sea surface temperature (SST) and the burst of BC contributed to the slump of LW. The remote transport of total aerosols was mainly caused by free diffusion, while the large-scale wind field played a secondary role at 500 m. The large-scale wind field played a more important role in aerosol transport at 3 km than at 500 m, especially for the gathered smoke, but free diffusion remained the major contributor. The decrease of SLB speed boosted the local accumulation of aerosols, thus making SLB speed decrease further, forming a positive feedback mechanism.


Abstract The wind field over an urban lake may exhibit considerable variability due to wind shielding effects from surrounding structures. Field measurements at an urban reservoir in Singapore were augmented by computational fluid dynamics (CFD) model results to develop a wind model over the reservoir surface via a data assimilation approach. The field measurements identified, depending on structure alignment with the prevailing wind direction, wind shielding that impacted wind direction and velocity over the reservoir surface. The wind model integrated the temporal response of the measurements and spatial distribution produced by the CFD modelling. The wind model was used to predict the spatio-temporal pattern of the wind field over the reservoir surface for a full year. The modeling results showed good agreement with measured wind data at three measurement locations on the reservoir surface. The wind model has been incorporated with a hydrodynamics and water quality model to provide the spatio-temporal wind forcing over the reservoir surface.


2022 ◽  
Vol 2022 ◽  
pp. 1-13
Author(s):  
Wei He ◽  
Suxia Zhang

In this study, the stability parameter range of a tethered quadrotor unmanned aerial vehicle (UAV) under the action of the transient wind field is numerically analyzed, which can provide a theoretical basis for the design and application of such systems. Three factors affecting the stability of tethered UAV system are determined, namely, cable tension, cable elongation, and UAV vibration velocity, and the corresponding judgment criteria are obtained. Specifically, the priority of the three criteria sequentially decreases. According to these criteria, the stability parameter range of the tethered UAV is examined under the cable parameters such as length, diameter, and elastic modulus and the environmental parameters such as the amplitude and period of the wind field. The results show that for designing the tethered UAV structure, by reducing the length of the tethered cable and increasing its diameter and elastic modulus, the working stability of tethered UAV system can be improved.


2022 ◽  
Vol 251 ◽  
pp. 113490
Author(s):  
Chengyin Liu ◽  
Yi Gong ◽  
Zhaoshuo Jiang ◽  
Kai Guo

MAUSAM ◽  
2022 ◽  
Vol 45 (3) ◽  
pp. 261-266
Author(s):  
U. S. DE ◽  
J. C. NATU

TIle'low frequency Iluctu atio ns in the troposphe ric wind field over India has been studied by spec tnuu~ na l l"i, tech nique. duri ng con trasting mon soons. namely, d rought and good monsoons ba sed on rainfall3cti\il)·. Si~ lliflc ant spectral peaks d urin g these years ha ve bee n iden tified.Zon al wind shea r in the lower tropospher ehan' also bern examin ed and the periodici ty in th e near 4()..day mode have bee n documented . Th e interannual, 'n.riill1i1ily of the mode and its potential as medium range predicti on tool has been examined in therrnpn perspect ive.


2022 ◽  
Vol 118 ◽  
pp. 103000
Author(s):  
Jie Xiong ◽  
Fujiang Yu ◽  
Cifu Fu ◽  
Jianxi Dong ◽  
Qiuxing Liu
Keyword(s):  

Abstract The evolution of the tropical cyclone boundary layer (TCBL) wind field before landfall is examined in this study. As noted in previous studies, a typical TCBL wind structure over the ocean features a supergradient boundary layer jet to the left of motion and Earth-relative maximum winds to the right. However, the detailed response of the wind field to frictional convergence at the coastline is less well known. Here, idealized numerical simulations reveal an increase in the offshore radial and vertical velocities beginning once the TC is roughly 200 km offshore. This increase in the radial velocity is attributed to the sudden decrease in frictional stress once the highly agradient flow crosses the offshore coastline. Enhanced advection of angular momentum by the secondary circulation forces a strengthening of the supergradient jet near the top of the TCBL. Sensitivity experiments reveal that the coastal roughness discontinuity dominates the friction asymmetry due to motion. Additionally, increasing the inland roughness through increasing the aerodynamic roughness length enhances the observed asymmetries. Lastly, a brief analysis of in-situ surface wind data collected during the landfall of three Gulf of Mexico hurricanes is provided and compared to the idealized simulations. Despite the limited in-situ data, the observations generally support the simulations. The results here imply that assumptions about the TCBL wind field based on observations from over horizontally-homogeneous surface types - which have been well-documented by previous studies - are inappropriate for use near strong frictional heterogeneity.


Sign in / Sign up

Export Citation Format

Share Document