Superplastic Forming Formula for Aluminum Channel Panels

Author(s):  
Frank G. Lee ◽  
M. David Hanna

A parametric study was conducted to determine how the design features and forming parameters affect part thinning and forming time in the Superplastic Forming Process (SPF). Explicit formulas, describing the maximum percent thinning and the forming time for channel parts formed by the SPF process as a function of eight designs and forming parameters, were derived. The formulas are good approximations of those obtained by finite element simulation analyses and physical experiments. Thinning of the channels was influenced most by the component aspect ratio (height versus width) and entry radius at top of the channel forming tool. The forming time was most influenced by strain rate, aspect ratio and tool bottom radius. A design domain can be established to avoid excessive thinning. The Taguchi design-of-experiment method was applied to select parameter combinations, and the MARC finite element code was used to conduct sectional analysis for various combinations.

2011 ◽  
Vol 148-149 ◽  
pp. 1319-1322
Author(s):  
Xiao Hu ◽  
Yi Sheng Zhang ◽  
Hong Qing Li ◽  
De Qun Li

Blow forming process of plastic sheets is simple and easy to realize, thus, it is widely used for plastic thin-wall parts. In the practical production, an effective method is needed for the preliminary set-up of process parameters in order to achieve accurate control of thickness distribution. Thus, a finite element method (FEM) code is used to simulate blow forming process. For better description of complex material theological characteristics, a physically based viscoelastic model (VUMAT forms Buckley model) to model the complex constitutive behavior is used. Nonlinear FE analyses using ABAQUS were carried out to simulate the blow forming process of plastic cups. The actual values at different locations show a satisfactory agreement with the simulation results: as a matter of fact the error along the cell mid-section did not exceed 0.02 mm on average, corresponding to 5% of the initial thickness, thus the FE model this paper can meet the requirements of the engineering practice.


2008 ◽  
Vol 367 ◽  
pp. 193-200
Author(s):  
Branko Grizelj ◽  
M. Plancak ◽  
Branimir Barisic

The paper analyses the process of simulation forward-backward extrusion. In metal forming industries, many products have to be formed in large numbers and with highly accurate dimensions. To save energy and material it is necessary to understand the behavior of material and to know the intermediate shapes of the formed parts and the mutual effects between tool and formed party during the forming process. These are normally based on numerical methods which take into account all physical conditions of the deformed material during the process. For this purpose, the finite element method has been developed in the past in different ways. The paper highlights the finite element simulation as a very useful technique in studying, where there is a generally close correlation in the load results obtained with finite elements method and those obtained experimentally.


2020 ◽  
Vol 982 ◽  
pp. 106-111
Author(s):  
Surasak Suranuntchai

Nowadays, finite element method (FEM) has been widely used to forecast metal forming process, to analysis problems of workpiece, to decrease production cost, and to save time of die design. This work studied the use of FEM as a tool to design a hot forging die for producing an automotive part named Yoke Spline. The part was made from carbon steel grade S45CVL0. There are three processes to produce Yoke Spline, including the buster, rougher, and finisher processes. The objective of the study was to increase efficiency of production by 5%. To achieve this objective, it was necessary to design a new die in the buster process by using FEM to analyze the die size and shape. The new die must produce the workpieces without any defects. The defects regularly found in the forging workpieces are the dimension out of specification, the under filling, and the crack. The sizes of the buster upper die cover are the width and depth. The die width of 44.5, 46.5 and 49.5 millimeters and the die depth of 25, 28 and 31 millimeters were used in the hot forging simulation. From FEM simulation results, it was found that the die width of 46.5 millimeters and the die depth of 28 millimeters were the best to form workpieces without any defects. In summary, the simulation and experimental results were compatible.


2011 ◽  
Vol 675-677 ◽  
pp. 921-924 ◽  
Author(s):  
Ming Wei Wang ◽  
Chun Yan Wang ◽  
Li Wen Zhang

Vacuum hot bulge forming (VHBF) is becoming an increasingly important manufacturing process for titanium alloy cylindrical workpiece in the aerospace industries. Finite element simulation is an essential tool for the specification of process parameters. In this paper, a two-dimensional nonlinear thermo-mechanical couple FE model was established. Numerical simulation of vacuum hot bulge forming of titanium alloy cylindrical workpiece was carried out using FE analysis software MSC.Marc. The effects of process parameter on vacuum hot bulge forming of BT20 titanium alloy cylindrical workpiece was analyzed by numerical simulation. The proposed an optimized vacuum hot bulge forming process parameters and die size. And the corresponding experiments were carried out. The simulated results agreed well with the experimental results.


2014 ◽  
Vol 722 ◽  
pp. 140-146
Author(s):  
Wen Juan Zhang ◽  
Long Wu ◽  
Gang Chen

In this paper the drawing process of Box-torque was simulated by Dynaform, which is FEM simulation software. The process parameters, which affected the quality of forming, were optimized by finite element simulation. The emphasis was focus on the optimization of draw-bead and BHF and data were summarized from the optimization graphs. In this simulation, lengthways draw-bead was set on the technical face for reducing or eliminating wrinkle. It was innovation difference from the usual that the draw-bead was set on binder. Finally the correctness of simulation was approved by comparing the optimization of simulation with the data of experimentation.


Sign in / Sign up

Export Citation Format

Share Document