Design and Analysis of Piezoelectric Transducer Based Resonant Actuation Systems

Aerospace ◽  
2005 ◽  
Author(s):  
Jun-Sik Kim ◽  
K. W. Wang ◽  
Edward C. Smith

The objective of this research is to address some of the important design issues of the recently developed piezoelectric resonant actuation system (RAS) concept. The RAS is achieved through both mechanical and electrical tailoring. With mechanical tuning, the resonant frequencies of the actuation system (includes the piezoelectric actuator and the related mechanical and electrical elements for actuation) can be adjusted to the required actuation frequencies. This obviously will increase the authority of the actuation system. To further enhance controllability and robustness, the actuation resonant peak can be significantly broadened and flattened with electrical tailoring through the aid of an electric network of inductance, resistance, and negative capacitance. Therefore, one can achieve a high authority actuator without the negative effects of resonant systems. In this investigation, the RAS is analyzed and compared to an equivalent mechanical system to provide better physical understandings. Design guidelines of the RAS are derived in a dimensionless form, and the optimal values of the electrical components are explicitly determined. A method of implementing the actuator circuitry is proposed and realized via a digital signal processor (DSP) system. Performance of the resonant actuation system is analyzed and verified experimentally on a full-scale piezoelectric tube actuator for light class helicopter rotor control. The electric power consumption of the RAS is analyzed and discussed in terms of the power factor and apparent power. It is demonstrated that a piezoelectric resonant actuation system with proper tunings not only yields high authority with a broad frequency bandwidth but also is electrically efficient in terms of power consumption.

Algorithms ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 112 ◽  
Author(s):  
Yulin Zhao ◽  
Donghui Wang ◽  
Leiou Wang

Convolutional neural networks (CNNs) have achieved great success in image processing. However, the heavy computational burden it imposes makes it difficult for use in embedded applications that have limited power consumption and performance. Although there are many fast convolution algorithms that can reduce the computational complexity, they increase the difficulty of practical implementation. To overcome these difficulties, this paper proposes several convolution accelerator designs using fast algorithms. The designs are based on the field programmable gate array (FPGA) and display a better balance between the digital signal processor (DSP) and the logic resource, while also requiring lower power consumption. The implementation results show that the power consumption of the accelerator design based on the Strassen–Winograd algorithm is 21.3% less than that of conventional accelerators.


Aerospace ◽  
2003 ◽  
Author(s):  
Jun-Sik Kim ◽  
K. W. Wang ◽  
Edward C. Smith

In this research, a new approach is proposed to enhance the effectiveness of piezoelectric actuators without the trade off between force and stroke. Through mechanical tailoring, the resonant frequencies of the actuation system (includes the piezoelectric actuator and the related mechanical and the electrical elements for actuation) can be tuned to the required actuation frequencies. This obvious will increase the authority (both stroke and force) of the actuation system. However, resonant actuation system could be hard to control and non-robust, due to its narrow operating bandwidth. This issue can be resolved through electric circuit tailoring. With the aid of a network of inductance, resistance, and negative capacitance, the actuation resonant peak can be significantly broadened and flattened. In this case, one can achieve a high authority actuation system without the negative effects of resonant problems. The electrical networks can also a achieve a fail-safe system due to its passive shunting characteristic. The proposed concept is evaluated using a PZT tube actuator for trailing edge flap control of rotocraft blades. Promising results are demonstrated, showing that the treatment can indeed create a high authority and robust actuation system that satisfies the performance requirements of the example application. Also, the proposed concept is verified by experiments using an equivalent circuit model with synthetic inductor and negative impedance converter of capacitance.


2004 ◽  
Vol 10 (8) ◽  
pp. 1151-1166 ◽  
Author(s):  
S. Sivrioglu ◽  
K. Nonami ◽  
M. Saigo

A nonlinear control approach based on a control current switching rule is studied experimentally for an energy storage flywheel active magnetic bearing (AMB) system. In the proposed control, only one electromagnet in each axis of the AMB has a current flow at any given time, depending on the rotor displacement. This results in a power consumption that is lower than a linear control employing a bias current. The equation of motion for the rigid rotor-AMB system is transformed to have a decentralized structure for the control design. To compute nonlinear control currents, an H ∞ compensator is designed for each axis of the AMB. The proposed approach is experimentally verified using a high-speed digital signal processor.


1996 ◽  
Vol 31 (4) ◽  
pp. 494-503 ◽  
Author(s):  
H. Kabuo ◽  
M. Okamoto ◽  
I. Tanaka ◽  
H. Yasoshima ◽  
S. Marui ◽  
...  

Author(s):  
Srikanth Perungulam ◽  
Scott Wills ◽  
Greg Mekras

Abstract This paper illustrates a yield enhancement effort on a Digital Signal Processor (DSP) where random columns in the Static Random Access Memory (SRAM) were found to be failing. In this SRAM circuit, sense amps are designed with a two-stage separation and latch sequence. In the failing devices the bit line and bit_bar line were not separated far enough in voltage before latching got triggered. The design team determined that the sense amp was being turned on too quickly. The final conclusion was that a marginal sense amp design, combined with process deviations, would result in this type of failure. The possible process issues were narrowed to variations of via resistances on the bit and bit_bar lines. Scanning Electron Microscope (SEM) inspection of the the Focused Ion Beam (FIB) cross sections followed by Transmission Electron Microscopy (TEM) showed the presence of contaminants at the bottom of the vias causing resistance variations.


Sign in / Sign up

Export Citation Format

Share Document