Effects of Creep Flow and Viscous Dissipation in the Slip Regime for Isoflux Rectangular Microchannels

Author(s):  
Jennifer van Rij ◽  
Tim Ameel ◽  
Todd Harman

The effects of rarefaction on convective heat transfer and pressure drop characteristics are numerically evaluated for uniform wall heat flux rectangular microchannels. Results are obtained by numerically solving the momentum and energy equations with both first- and second-order slip velocity and temperature jump boundary conditions. The resulting velocity and temperature fields are then evaluated to obtain the microchannel Poiseuille and Nusselt numbers. In addition to the effects of rarefaction, the effects of aspect ratio, thermal creep flow, and viscous dissipation are investigated for locally fully developed Poiseuille and Nusselt numbers. The constant wall heat flux results obtained in this study are compared to constant wall temperature results obtained previously, using the same numerical algorithm, at various aspect ratios including the limiting case of parallel plate microchannels. In addition to supplying previously unreported data on slip flow convective heat transfer and pressure drop characteristics, these results verify the numerical algorithm for more complex future slip flow analyses.

Author(s):  
Suhyun Kim ◽  
Seungwon Suh ◽  
Seungchan Baek ◽  
Wontae Hwang

Abstract Convective cooling inside the internal passage of a turbine blade trailing edge is often insufficient at the sharp corner, when cutback slot cooling is not present. This study investigates the convective heat transfer and pressure drop in a simplified trailing edge internal channel. The internal passage has been modeled as a right triangular channel with a 9° angle sharp corner. Heated baseline (with no internal features) and ribbed copper plates have been examined via infrared thermography. A uniform heat flux heater is installed beneath the plates, and non-uniformities in the heat flux due to conduction is corrected by a RANS conjugate heat transfer calculation. The numerical simulations were validated beforehand by experimental results of mean velocity, friction factor, and temperature fields. Nusselt number distributions show that convective heat transfer is significantly enhanced with ribs, and closely coupled with the vortical flow structure. Heat transfer at the corner is increased by more than a factor of two with ribs, due to secondary flow towards the corner. Although the pressure loss and friction increase slightly, the overall thermal performance, represented by the average Nusselt number with respect to the friction factor, increases by a factor of two with the ribs.


Processes ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1668
Author(s):  
Abdulrahim Kalendar ◽  
Yousuf Alhendal ◽  
Shafqat Hussain ◽  
Patrick Oosthuizen

A numerical study was undertaken of the naturally occurring laminar convective heat transfer from a slender cuboid with a relatively narrow cross-section (square) and an exposed top surface. The cuboid was perpendicularly placed on an adiabatic flat base plate and two types of surface boundary conditions were considered. The slender cuboid was inclined relative to the vertical axis at angles ranging from 0 to 180 degrees. The flow was considered symmetrical along the vertical axis of the slender cuboid. The equations governing the system were numerically solved in terms of dimensionless variables using FLUENT software. From the results obtained, mean Nusselt numbers over the slender cuboid were calculated using parameters such as: the Rayleigh number for heat flux, Ra*; the Rayleigh number, Ra; the slender cuboid dimensionless width, i.e., the ratio of the width to the height of the heated slender cuboid, W = w/h; and the position of the slender cuboid relative to the vertical, φ. Simulation results were produced for the boundary conditions of constant temperature, constant heat flux, and for Pr = 0.7. The effects of these parameters on the mean Nusselt number for the combined and for the individual surfaces of the slender cuboid are presented and the mean Nusselt numbers are correlated.


2015 ◽  
Vol 138 (1) ◽  
Author(s):  
K. Ramadan

Convective heat transfer of a thermally developing rarefied gas flow in a microtube with boundary shear work, viscous dissipation, and axial conduction is analyzed numerically for both constant wall temperature (CWT) and constant wall heat flux (CHF) boundary conditions. Analytical solutions for the fully developed flow conditions including the boundary shear work are also derived. The proper thermal boundary condition considering the sliding friction at the wall for the CHF case is implemented. The sliding friction is also included in the calculation of the wall heat flux for the CWT case. A comparative study is performed to quantify the effect of the shear work on heat transfer in the entrance—and the fully developed—regions for both gas cooling and heating. Results are presented in both graphical and tabular forms for a range of problem parameters. The results show that the effect of shear work on heat transfer is considerable and it increases with increasing both the Knudsen number and Brinkman number. Neglecting the shear work in a microtube slip flow leads to over- or underestimating the Nusselt number considerably. In particular, for the CWT case with fully developed conditions, the contribution of the shear work to heat transfer can be around 45% in the vicinity of the upper limit of the slip flow regime, regardless of how small the nonzero Brinkman number can be.


2013 ◽  
Vol 135 (10) ◽  
Author(s):  
Barbaros Çetin

In this paper, velocity profile, temperature profile, and the corresponding Poiseuille and Nusselt numbers for a flow in a microtube and in a slit-channel are derived analytically with an isoflux thermal boundary condition. The flow is assumed to be hydrodynamically and thermally fully developed. The effects of rarefaction, viscous dissipation, axial conduction are included in the analysis. For the implementation of the rarefaction effect, two different second-order slip models (Karniadakis and Deissler model) are used for the slip-flow and temperature-jump boundary conditions together with the thermal creep at the wall. The effect of the thermal creep on the Poiseuille and Nusselt numbers are discussed. The results of the present study are important (i) to gain the fundamental understanding of the effect of thermal creep on convective heat transfer characteristics of a microchannel fluid flow and (ii) for the optimum design of thermal systems which includes convective heat transfer in a microchannel especially operating at low Reynolds numbers.


2021 ◽  
pp. 875608792110258
Author(s):  
Azhar Ali ◽  
Dil Nawaz Khan Marwat ◽  
Aamir Ali

Flows and heat transfer over stretching/shrinking and porous surfaces are studied in this paper. Unusual and generalized similarity transformations are used for simplifying governing equations. Current model includes all previous cases of stretched/shrunk flows with thermal effects discussed so far. Moreover, we present three different cases of thermal behavior (i) prescribed surface temperature (ii) Variable/uniform convective heat transfer at plat surface and (iii) prescribed variable/uniform heat flux. Stretching/shrinking velocity Uw(x), porosity [Formula: see text], heat transfer [Formula: see text], heat flux [Formula: see text] and convective heat transfer at surface are axial coordinate dependent. Boundary layer equations and boundary conditions are transformed into nonlinear ODEs by introducing unusual and generalized similarity transformations for the variables. These simplified equations are solved numerically. Final ODEs represent suction/injection, stretching/shrinking, temperature, heat flux, convection effects and specific heat. This current problem encompasses all previous models as special cases which come under the scope of above statement (title). The results of classical models are scoped out as a special case by assigning proper values to the parameters. Numerical result shows that the dual solutions can be found for different possible values of the shrinking parameter. A stability analysis is accomplished and apprehended in order to establish a criterion for determining linearly stable and physically compatible solutions. The significant features and diversity of the modeled equations are scrutinized by recovering the previous problems of fluid flow and heat transfer from a uniformly heated sheet of variable (uniform) thickness with variable (uniform) stretching/shrinking and injection/suction velocities.


Sign in / Sign up

Export Citation Format

Share Document