Characterization of the Effect of Geometry on Single Cell Adhesion Strength Using a Microfluidic Device
Cell adhesion plays a crucial role in a number of fundamental physiological processes and is important in the development of implantable biomaterials. Cell adhesion strength has previously been measured using a range of techniques, including population assays (e.g., centrifugation [1], hydrodynamic flow [2]) and single-cell methods (e.g., AFM [3], micropipette manipulation [4]). Population studies are unable to provide detailed information about individual cell behavior, while the single-cell methods are often time-consuming and difficult to perform. Microfluidic channels present a way to generate well-defined stress fields on cells [5]. The small dimensions of these channels result in low Reynolds numbers that allow for the generation of sufficiently large stresses to detach well-spread cells under laminar flow conditions. In the present work, a microfluidic channel was used to controllably load adhered single-cells to detachment and measure the adhesion strength. Using this assay, the effect of cell geometry on adhesion strength was investigated.