Thermal Analysis of Natural-Convection-Cooled Heat Sinks Using the Volume-Averaging Approach

Author(s):  
Chan Byon ◽  
Sung Jin Kim

In this paper, a compact modeling method for predicting the thermal characteristics of vertical plate fin heat sinks under natural convection is presented. The plate fin heat sink is modeled using the volume-averaging approach. The solutions for velocity and temperature distributions are obtained by solving the averaged governing equations. In order to validate the model proposed in this paper, experimental investigations are performed. The resulting effective heat transfer coefficients of heat sinks are compared with those obtained through the compact modeling. Under comparison, the analytical solutions based on the compact modeling are shown to predict the heat transfer characteristics of plate fin heat sink quite well. Comparisons with other studies are also conducted. Using the validated model, the thermal resistances of heat sinks are obtained. The heat transfer characteristics of the heat sink under natural convection are compared with those of the heat sink subjected to forced convection. And finally, thermal optimization of heat sink is performed.

Author(s):  
S. T. Kuo ◽  
M. P. Wang ◽  
M. C. Wu ◽  
Y. H. Hung

A series of experimental investigations with a new modified transient liquid crystal method on the studies related to the fluid flow and heat transfer characteristics in a channel installed with a heat sink have been successfully performed. The parametric studies on the local and average effective heat transfer characteristics for confined heat sinks have been explored. The influencing parameters and conditions include air preheating temperature at channel inlet, flow velocity and heat sink types. Besides, a concept of the amount of enhanced heat transfer (AEHT) is introduced and defined as the ratio of j/f. The j/f ratio is almost independent of Reynolds number for a specific confined heat sink. The j/f ratios are 0.0603 and 0.0124 for fully-confined and unconfined heat sinks, respectively.


2005 ◽  
Vol 127 (4) ◽  
pp. 474-482 ◽  
Author(s):  
Ming-Chang Wu ◽  
Tiao-Yuan Wu ◽  
Sheng-Tzung Kuo ◽  
Meng-Ping Wang ◽  
Ying-Huei Hung

A series of experimental investigations with a new modified transient liquid crystal method on the studies related to the fluid flow and heat transfer characteristics in a channel installed with a heat sink have been successfully performed. The parametric studies on the local and average effective heat transfer characteristics for confined heat sinks have been explored. The influencing parameters and conditions include air preheating temperature at channel inlet, flow velocity and heat sink types. Besides, a concept of the amount of enhanced heat transfer (AEHT) is introduced and defined as the ratio of j∕f. The j∕f ratio is almost independent of Reynolds number for a specific confined heat sink. The j∕f ratios are 0.0603 and 0.0124 for fully-confined and unconfined heat sinks, respectively.


2004 ◽  
Vol 126 (2) ◽  
pp. 247-255 ◽  
Author(s):  
Duckjong Kim ◽  
Sung Jin Kim

In the present work, a compact modeling method based on a volume-averaging technique is presented. Its application to an analysis of fluid flow and heat transfer in straight fin heat sinks is then analyzed. In this study, the straight fin heat sink is modeled as a porous medium through which fluid flows. The volume-averaged momentum and energy equations for developing flow in these heat sinks are obtained using the local volume-averaging method. The permeability and the interstitial heat transfer coefficient required to solve these equations are determined analytically from forced convective flow between infinite parallel plates. To validate the compact model proposed in this paper, three aluminum straight fin heat sinks having a base size of 101.43mm×101.43mm are tested with an inlet velocity ranging from 0.5 m/s to 2 m/s. In the experimental investigation, the heat sink is heated uniformly at the bottom. The resulting pressure drop across the heat sink and the temperature distribution at its bottom are then measured and are compared with those obtained through the porous medium approach. Upon comparison, the porous medium approach is shown to accurately predict the pressure drop and heat transfer characteristics of straight fin heat sinks. In addition, evidence indicates that the entrance effect should be considered in the thermal design of heat sinks when Re Dh/L>∼O10.


Author(s):  
Duckjong Kim ◽  
Sung Jin Kim

In the present work, a novel compact modeling method based on the volume-averaging technique and its application to the analysis of fluid flow and heat transfer in pin fin heat sinks are presented. The pin fin heat sink is modeled as a porous medium. The volume-averaged momentum and energy equations for fluid flow and heat transfer in pin fin heat sinks are obtained using the local volume-averaging method. The permeability, the Ergun constant and the interstitial heat transfer coefficient required to solve these equations are determined experimentally. To validate the compact model proposed in this paper, 20 aluminum pin fin heat sinks having a 101.43 mm × 101.43 mm base size are tested with an inlet velocity ranging from 1 m/s to 5 m/s. In the experimental investigation, the heat sink is heated uniformly at the bottom. Pressure drop and heat transfer characteristics of pin fin heat sinks obtained from the porous medium approach are compared with experimental results. Upon comparison, the porous medium approach is shown to predict accurately the pressure drop and heat transfer characteristics of pin fin heat sinks. Finally, surface porosities of the pin fin heat sink for which the thermal resistance of the heat sink is minimal are obtained under constraints on pumping power and heat sink size. The optimized pin fin heat sinks are shown to be superior to the optimized straight fin heat sinks in thermal performance by about 50% under the same constraints on pumping power and heat sink size.


Author(s):  
SW Pua ◽  
KS Ong ◽  
KC Lai ◽  
MS Naghavi

Downward lighting light-emitting diodes require cooling with cylindrical fin heat sinks to be mounted on top and cooled under natural convection air cooling mode. Performance simulation would involve specification of the heat transfer coefficient. Numerous methods are available to simulate the performance of conventional plate fin heat sinks including computational fluid dynamics packages. It would be feasible to perform simulation based on conventional flat plate fin heat sinks. A cylindrical fin heat sinks could be simply treated as a plate fin heat sink, if we imagine it cut open and laid out horizontally. A theoretical model is proposed in this paper. An experimental investigation is conducted here to validate its accuracy. Convective heat transfer coefficients were experimentally determined for a horizontally and vertically inclined bare plate operating under natural and forced air cooling modes. In addition, a vertical plate fin heat sink and a vertical cylindrical fin heat sink under natural convection were investigated. Power inputs were kept from 5 to 40 W in order to keep operating temperatures below 100 ℃. Comparison of the experimental heat transfer coefficients and those obtained from well-known existing Nusselt number correlations show that agreement was poor for the bare plate but satisfactory for the plate and cylindrical fin heat sinks. Although they are within the generally accepted range, it would be advisable for actual measurements to be carried out in order to provide more accurate sizing for thermal measurements.


Author(s):  
T. Y. Wu ◽  
M. C. Wu ◽  
J. T. Horng ◽  
S. F. Chang ◽  
P. L. Chen ◽  
...  

A series of experimental studies on the heat transfer characteristics from heat sinks or Heat Sink/TEC assemblies in a ducted flow have been performed. Their effects on heat transfer characteristics in ducted flow have been systematically explored. From the results, new performance correlations of the temperature difference (ΔT) and terminal voltage (V) of the TEC modules are proposed. Besides, two new correlations of steady-state average Nusselt number and external thermal resistance in terms of relevant influencing parameters for confined ppf heat sinks in a ducted flow are also proposed, respectively. The statistical sensitivity analysis of ANOVA F-test is employed to estimate the contributions of relevant parameters. Furthermore, a series of RSM models for evaluating heat transfer characteristics including average Nusselt number, average external thermal resistance and Tc−Ta are established. A Sequential Quadratic Programming with multi-starting-point method is successfully employed to automatically and efficiently seek a globally optimal thermal performance. An optimal design of HS/TEC assemblies under both COP ≥ 2 and pumping power limitation larger than 30 W can be achieved with a reduction of 75% on thermal resistance.


2004 ◽  
Vol 126 (3) ◽  
pp. 342-350 ◽  
Author(s):  
Duckjong Kim ◽  
Sung Jin Kim ◽  
Alfonso Ortega

In this work, a novel compact modeling method based on the volume-averaging technique is presented. Its application to the analysis of fluid flow and heat transfer in pin fin heat sinks are further analyzed. The pin fin heat sink is modeled as a porous medium. The volume-averaged momentum and energy equations for fluid flow and heat transfer in pin fin heat sinks are obtained by using the local volume-averaging method. The permeability, the Ergun constant, and the interstitial heat transfer coefficient required to solve these equations are determined experimentally and correlations for them are presented. To validate the compact model proposed in this paper, 20 aluminum pin fin heat sinks having a 101.43 mm×101.43 mm base size are tested with an inlet velocity ranging from 1 m/s to 5 m/s. In the experimental investigation, the heat sink is heated uniformly at the bottom. Pressure drop and heat transfer characteristics of pin fin heat sinks obtained from the porous medium approach are compared with experimental results. Upon comparison, the porous medium approach is shown to predict accurately the pressure drop and heat transfer characteristics of pin fin heat sinks. Finally, for minimal thermal resistance, the optimum surface porosities of the pin fin heat sink are obtained under constraints on pumping power and heat sink size. The optimized pin fin heat sinks are shown to be superior to the optimized straight fin heat sinks in thermal performance by about 50% under the same constraints on pumping power and heat sink size.


Author(s):  
H. T. Chen ◽  
T. Y. Wu ◽  
P. L. Chen ◽  
S. F. Chang ◽  
Y. H. Hung

The pressure drop and heat transfer characteristics for partially-confined heat sinks with different fin types, including plain-plate fin, pin-fin array and strip-fin array, in ducted flow are investigated. The main focus of the experimental results is on pressure drop and heat transfer characteristics of generalized heat sink in ducted flow with considering the flow top- and side-bypass effects. The parameters controlled in the study are the heating load (Qt), inlet flow velocity (Ui), the ratio of heat sink height to duct height (Hs/Hc), and the ratio of heat sink width to duct width (Ws/Wc). The ranges of parameters studied are Ui=2~12m/s, Qt=10~30W, Ws/Wc = 0.6~1, and Hs/Hc = 0.5~1. In the present study, an effective friction factor related to the overall pressure drop is defined; and a new experimental correlation for the effective friction factor for generalized heat sinks in ducted flow with top- and side-bypass effects is presented. A satisfactory agreement between the experimental data and the theoretical predictions is achieved with the maximum and average deviations of 17.2% and 9.6%, respectively. As for convective heat transfer performance, the average Nusselt number is not significantly affected by Grashof number; while, it increases significantly with increasing Reynolds number. Furthermore, the thermal performance increases with increasing top or side confinement ratio (Hs/Hc or Ws/Wc). The best thermal performance occurred at the fully-confined condition, i.e., Hs/Hc=1, Ws/Wc = 1. Based on all the experimental data for three types of partially-confined heat sinks, a generalized correlation of average Nusselt number for partially-confined heat sinks in ducted flow in terms of Re, Hs/Hc and Ws/Wc is presented. The maximum and average deviations of the results obtained by the experimental data from the theoretical prediction are 12.4% and 7.5%, respectively.


Sign in / Sign up

Export Citation Format

Share Document