Numerical Modelling of Internal Combustion Engines Fuelled by Hydrogen-Natural Gas Blends

Author(s):  
Antonio Mariani ◽  
Biagio Morrone ◽  
Andrea Unich

The strict rules that European Community has given for reducing vehicle emissions require new views on the choice of combustion engines and fuels. In fact, the rules will probably introduce in the near future limitations on carbon dioxide (CO2) emissions. Internal combustion engines are responsible for emission of unburned hydrocarbons (HC), nitrogen oxides (NOx) and particulate matter (PM). The aim of the present paper is the study of the effects of hydrogen-natural gas blends (HCNG) on the performance, efficiency and NOx emissions of internal combustion engines (ICE). A numerical engine model has been developed to display how the presence of hydrogen in such mixtures impacts on flame speed and burn rates. The model allows the comparison of different fuels, in terms of engine brake efficiency and pollutant emissions. An important variable for the combustion process is the ignition timing which is set employing Maximum Brake Torque (MBT) spark advance. Engine operating conditions considered in the numerical analysis have been obtained by imposing engine speed and load. Brake power, efficiency and NOx emissions are calculated for the most frequent operating conditions met by automotive engines, i.e. part load and low speed. The effect of natural gas (NG) enrichment by hydrogen on flame speed has been considered. Thus, faster combustion and the reduction of energy content in the air-fuel mixtures due to the lower density of hydrogen are taken into account. Hydrogen enrichment of natural gas improves combustion stability in critical conditions, allowing the use of extremely lean mixtures or high Exhaust Gas Recirculation rates. The results show that by employing an MBT spark advance, the HCNG blends furnish improvements of engine brake efficiency compared with compressed natural gas (CNG), which are more relevant at part loads and for the higher hydrogen content. Anyway, higher NOx emissions are observed due to the increased temperatures into the cylinders. Thus, the analysis also takes into account the Exhaust Gas Recirculation (EGR) dilution technique to reduce the NOx emissions. A large reduction of such pollutant, which has been estimated greater than 50%, can be achieved by using a 10% EGR. Furthermore higher engine efficiency is obtained using EGR due to reduced pumping work, reduced heat loss to the walls because of lower gas temperature and a reduction in the degree of dissociation in the high temperature burned gases.

Author(s):  
Dengting Zhu ◽  
Zhenzhong Sun ◽  
Xinqian Zheng

Energy saving and emission reduction are very urgent for internal combustion engines. Turbocharging and exhaust gas recirculation technologies are very significant for emissions and fuel economy of internal combustion engines. Various after-treatment technologies in internal combustion engines have different requirements for exhaust gas recirculation rates. However, it is not clear how to choose turbocharging technologies for different exhaust gas recirculation requirements. This work has indicated the direction to the turbocharging strategy among the variable geometry, two-stage, and asymmetric twin-scroll turbocharging for different exhaust gas recirculation rates. In the paper, a test bench engine experiment was presented to validate the numerical models of the three diesel engines employed with the asymmetric twin-scroll turbine, two-stage turbine, and variable geometry turbine. On the basis of the numerical models, the turbocharging routes among the three turbocharging approaches under different requirements for EGR rates are studied, and the other significant performances of the three turbines were also discussed. The results show that there is an inflection point in the relative advantages of asymmetric, variable geometry, and two-stage turbocharged engines. At the full engine load, when the EGR rate is lower than 29%, the two-stage turbocharging technology has the best performances. However, when the exhaust gas recirculation rate is higher than 29%, the asymmetric twin-scroll turbocharging is the best choice and more appropriate for driving high exhaust gas recirculation rates. The work may offer guidelines to choose the most suitable turbocharging technology for engine engineers and manufacturers to achieve further improvements in engine energy and emissions.


2021 ◽  
Vol 2061 (1) ◽  
pp. 012065
Author(s):  
I I Libkind ◽  
A V Gonturev

Abstract When converting diesel engines to run on natural gas on the gas-diesel cycle, additional problems arise associated with the high thermal stress of the exhaust valves and valve seats at high loads and engine speeds. There is also an increase in NOx emissions due to higher combustion temperatures of natural gas. One of the ways to improve the economic and environmental performance of engines operating on a gas-diesel cycle with a lean air-fuel mixture is to optimize the combustion of the air-fuel mixture by using an exhaust gas recirculation system (EGR). The principle of operation of this system is as follows: exhaust gas entering the intake manifold and further into the combustion chamber reduces the oxygen concentration in the air-fuel mixture, which leads to a dilution effect and, accordingly, to a decrease in combustion temperature and a decrease in NOx content. In order to study the influence of EGR on the dual-fuel gas and diesel engine parameters in the AVL Boost software package, a computer model of the existing 6ChN13/15 engine was developed. A low-pressure EGR system with an exhaust gas cooler was simulated on this engine. Values of NOx emissions, brake specific fuel consumption (BSFC) and brake efficiency have been obtained at different recirculation rate by calculation method. These values allow to estimate the feasibility of using a cooled EGR in a natural gas-fueled diesel engine.


2020 ◽  
Vol 142 (7) ◽  
Author(s):  
Nick Papaioannou ◽  
Felix Leach ◽  
Martin Davy

Abstract Accurate measurement of exhaust gas temperature (EGT) in internal combustion engines (ICEs) is a challenging task. The most common, and also the most practical, method of measurement is to insert a physical probe, for example, a thermocouple or platinum resistance thermometer, directly into the exhaust flow. Historically, consideration of the measurement errors induced by this arrangement has focused on the effects of radiation and the loss of temporal resolution naturally associated with a probe of finite thermal inertia operating within a pulsating flow with a time-varying heat input. However, a recent numerical and experimental study has shown that conduction errors may also have a significant effect on the measured EGT, with errors approaching ∼80 K depending on engine operating conditions. In this work, the authors introduce a new temperature compensation method that can correct for the combined radiation, conduction, and dynamic response errors introduced during the measurement and thereby reconstruct the “true” crank-angle resolved EGT to an estimated accuracy of ±1.5%. The significance of this result is demonstrated by consideration of a first law energy balance on an engine. It is shown that the exhaust gas enthalpy term is underestimated by 15–18% when calculated using conventional time-averaged data as opposed to using the mass-average exhaust enthalpy that is obtained by combining the reconstructed temperature data with crank angle-resolved exhaust flow rates predicted by a well-validated one-dimensional (1D) simulation.


Author(s):  
Riccardo Scarcelli ◽  
James Sevik ◽  
Thomas Wallner ◽  
Keith Richards ◽  
Eric Pomraning ◽  
...  

Dilute combustion is an effective approach to increase the thermal efficiency of spark-ignition (SI) internal combustion engines (ICEs). However, high dilution levels typically result in large cycle-to-cycle variations (CCV) and poor combustion stability, therefore limiting the efficiency improvement. In order to extend the dilution tolerance of SI engines, advanced ignition systems are the subject of extensive research. When simulating the effect of the ignition characteristics on CCV, providing a numerical result matching the measured average in-cylinder pressure trace does not deliver useful information regarding combustion stability. Typically large eddy simulations (LES) are performed to simulate cyclic engine variations, since Reynolds-averaged Navier–Stokes (RANS) modeling is expected to deliver an ensemble-averaged result. In this paper, it is shown that, when using RANS, the cyclic perturbations coming from different initial conditions at each cycle are not damped out even after many simulated cycles. As a result, multicycle RANS results feature cyclic variability. This allows evaluating the effect of advanced ignition sources on combustion stability but requires validation against the entire cycle-resolved experimental dataset. A single-cylinder gasoline direct injection (GDI) research engine is simulated using RANS and the numerical results for 20 consecutive engine cycles are evaluated for several operating conditions, including stoichiometric as well as exhaust gas recirculation (EGR) dilute operation. The effect of the ignition characteristics on CCV is also evaluated. Results show not only that multicycle RANS simulations can capture cyclic variability and deliver similar trends as the experimental data but more importantly that RANS might be an effective, lower-cost alternative to LES for the evaluation of ignition strategies for combustion systems that operate close to the stability limit.


Fuel ◽  
1991 ◽  
Vol 70 (4) ◽  
pp. 499-502 ◽  
Author(s):  
Timothy Fowler ◽  
David Lander ◽  
Diane Broomhall

Sign in / Sign up

Export Citation Format

Share Document