Generating Near-THz Surface Acoustic Waves Using Picosecond Ultrasonics
We present here a technique to generate high frequency SAW in non-piezoelectric substrate with nanostructure grating of period less than 100 nm fabricated on it. A short pulse laser (with rise time less than 100fs) incident on this structure creates a periodic thermal stress due to the differential absorption in the substrate and the grating. We show that this stress sets up a surface acoustic wave on the substrate that can be detected optically. Modeling the generation process and analysis of SAW spectrum reveals the critical parameters to be controlled for obtaining SAW of high frequency. We show that the grating period less than 50 nm, a laser pulse of rise time less than 100fs and substrate properties like high optical absorption and high Rayleigh velocity are necessary for generating surface acoustic waves in near-THz range. This work provides quantitative guidelines on the design of near THz phononics.