A Two-Dimensional Nonlinear Volumetric Foot Contact Model

Author(s):  
Sukhpreet Singh Sandhu ◽  
John McPhee

This paper presents the development of a two-dimensional (2D) multibody foot contact model consisting of a volumetric model of foot pad. The volumetric model employs nonlinear springs and linear dampers to represent the complex material behavior of the foot pad, typical of a visco-hyperelastic material. The nonlinear springs of the foot contact model are motivated by an Ogden-type material that can describe the nonlinear constitutive behavior of a wide variety of biological tissues and rubbers. The geometry of the foot pad is modeled as three simplified ellipse which represent the heel, balls of the feet, and toe. The efficacy of the developed foot contact model is established by driving the simulation model with kinematics observed from walking experiments and comparing the generated ground reaction force with the experimental data.

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10975
Author(s):  
Nicos Haralabidis ◽  
Gil Serrancolí ◽  
Steffi Colyer ◽  
Ian Bezodis ◽  
Aki Salo ◽  
...  

Biomechanical simulation and modelling approaches have the possibility to make a meaningful impact within applied sports settings, such as sprinting. However, for this to be realised, such approaches must first undergo a thorough quantitative evaluation against experimental data. We developed a musculoskeletal modelling and simulation framework for sprinting, with the objective to evaluate its ability to reproduce experimental kinematics and kinetics data for different sprinting phases. This was achieved by performing a series of data-tracking calibration (individual and simultaneous) and validation simulations, that also featured the generation of dynamically consistent simulated outputs and the determination of foot-ground contact model parameters. The simulated values from the calibration simulations were found to be in close agreement with the corresponding experimental data, particularly for the kinematics (average root mean squared differences (RMSDs) less than 1.0° and 0.2 cm for the rotational and translational kinematics, respectively) and ground reaction force (highest average percentage RMSD of 8.1%). Minimal differences in tracking performance were observed when concurrently determining the foot-ground contact model parameters from each of the individual or simultaneous calibration simulations. The validation simulation yielded results that were comparable (RMSDs less than 1.0° and 0.3 cm for the rotational and translational kinematics, respectively) to those obtained from the calibration simulations. This study demonstrated the suitability of the proposed framework for performing future predictive simulations of sprinting, and gives confidence in its use to assess the cause-effect relationships of technique modification in relation to performance. Furthermore, this is the first study to provide dynamically consistent three-dimensional muscle-driven simulations of sprinting across different phases.


Author(s):  
Ali A. Abbasi ◽  
M. T. Ahmadian

In order to better understand the mechanical properties of biological cells, characterization and investigation of their material behavior is necessary. In this paper hyperelastic Neo-Hookean material is used to characterize the mechanical properties of mouse oocyte cell. It has been assumed that the cell behavior is continues, isotropic, nonlinear and homogenous material. Then, by matching the experimental data with finite element (FE) simulation result and using the Levenberg–Marquardt optimization algorithm, the nonlinear hyperelastic model parameters have been extracted. Experimental data of mouse oocyte captured from literatures. Advantage of the developed model is that it can be used to calculate accurate reaction force on surgical instrument or it can be used to compute deformation or force in virtual reality based medical simulations.


2001 ◽  
Vol 6 (2) ◽  
pp. 3-14 ◽  
Author(s):  
R. Baronas ◽  
F. Ivanauskas ◽  
I. Juodeikienė ◽  
A. Kajalavičius

A model of moisture movement in wood is presented in this paper in a two-dimensional-in-space formulation. The finite-difference technique has been used in order to obtain the solution of the problem. The model was applied to predict the moisture content in sawn boards from pine during long term storage under outdoor climatic conditions. The satisfactory agreement between the numerical solution and experimental data was obtained.


Water ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2152
Author(s):  
Gonzalo García-Alén ◽  
Olalla García-Fonte ◽  
Luis Cea ◽  
Luís Pena ◽  
Jerónimo Puertas

2D models based on the shallow water equations are widely used in river hydraulics. However, these models can present deficiencies in those cases in which their intrinsic hypotheses are not fulfilled. One of these cases is in the presence of weirs. In this work we present an experimental dataset including 194 experiments in nine different weirs. The experimental data are compared to the numerical results obtained with a 2D shallow water model in order to quantify the discrepancies that exist due to the non-fulfillment of the hydrostatic pressure hypotheses. The experimental dataset presented can be used for the validation of other modelling approaches.


2010 ◽  
Vol 42 ◽  
pp. 204-208 ◽  
Author(s):  
Xiang Dong Li ◽  
Quan Cai Wang

In this paper, the characteristic of grinding force in two-dimensional ultrasonic vibration assisted grinding nano-ceramic was studied by experiment based on indentation fracture mechanics, and mathematical model of grinding force was established. The study shows that grinding force mainly result from the impact of the grains on the workpiece in ultrasonic grinding, and the pulse power is much larger than normal grinding force. The ultrasonic vibration frequency is so high and the contact time of grains with the workpiece is so short that the pulse force will be balanced by reaction force from workpiece. In grinding workpiece was loaded by the periodical stress field, which accelerates the fatigue fracture.


Author(s):  
L. Gallar ◽  
I. Tzagarakis ◽  
V. Pachidis ◽  
R. Singh

After a shaft failure the compression system of a gas turbine is likely to surge due to the heavy vibrations induced on the engine after the breakage. Unlike at any other conditions of operation, compressor surge during a shaft over-speed event is regarded as desirable as it limits the air flow across the engine and hence the power available to accelerate the free turbine. It is for this reason that the proper prediction of the engine performance during a shaft over-speed event claims for an accurate modelling of the compressor operation at reverse flow conditions. The present study investigates the ability of the existent two dimensional algorithms to simulate the compressor performance in backflow conditions. Results for a three stage axial compressor at reverse flow were produced and compared against stage by stage experimental data published by Gamache. The research shows that due to the strong radial fluxes present over the blades, two dimensional approaches are inadequate to provide satisfactory results. Three dimensional effects and inaccuracies are accounted for by the introduction of a correction parameter that is a measure of the pressure loss across the blades. Such parameter is tailored for rotors and stators and enables the satisfactory agreement between calculations and experiments in a stage by stage basis. The paper concludes with the comparison of the numerical results with the experimental data supplied by Day on a four stage axial compressor.


2003 ◽  
Vol 125 (3) ◽  
pp. 363-371 ◽  
Author(s):  
Padmanabhan Seshaiyer ◽  
Jay D. Humphrey

Quantification of the mechanical behavior of hyperelastic membranes in their service configuration, particularly biological tissues, is often challenging because of the complicated geometry, material heterogeneity, and nonlinear behavior under finite strains. Parameter estimation thus requires sophisticated techniques like the inverse finite element method. These techniques can also become difficult to apply, however, if the domain and boundary conditions are complex (e.g. a non-axisymmetric aneurysm). Quantification can alternatively be achieved by applying the inverse finite element method over sub-domains rather than the entire domain. The advantage of this technique, which is consistent with standard experimental practice, is that one can assume homogeneity of the material behavior as well as of the local stress and strain fields. In this paper, we develop a sub-domain inverse finite element method for characterizing the material properties of inflated hyperelastic membranes, including soft tissues. We illustrate the performance of this method for three different classes of materials: neo-Hookean, Mooney Rivlin, and Fung-exponential.


1986 ◽  
Vol 108 (1) ◽  
pp. 64-70 ◽  
Author(s):  
O. K. Kwon ◽  
R. H. Pletcher

A viscous-inviscid interaction scheme has been developed for computing steady incompressible laminar and turbulent flows in two-dimensional duct expansions. The viscous flow solutions are obtained by solving the boundary-layer equations inversely in a coupled manner by a finite-difference scheme; the inviscid flow is computed by numerically solving the Laplace equation for streamfunction using an ADI finite-difference procedure. The viscous and inviscid solutions are matched iteratively along displacement surfaces. Details of the procedure are presented in the present paper (Part 1), along with example applications to separated flows. The results compare favorably with experimental data. Applications to turbulent flows over a rearward-facing step are described in a companion paper (Part 2).


1978 ◽  
Vol 1 (16) ◽  
pp. 87 ◽  
Author(s):  
P. Nielsen ◽  
I.A. Svensen ◽  
C. Staub

A theoretical model is developed for the movement of loose sediments in oscillatory flow with or without a net current. In the present formulation the model is two-dimensional, but may readily be extended to three dimensions. It is assumed that all movement of sediments occurs in suspension, and exact analytical solutions are given for the time variation of the concentration profile, the instantaneous sediment flux and the net flux of sediment over a wave period. The model requires as empirical input a diffusion coefficient e and pick-up function p(t), for which experimental data are presented. Two examples are discussed in detail, illustrating important aspects of the onshore-offshore sediment motion.


2021 ◽  
Vol 2103 (1) ◽  
pp. 012048
Author(s):  
I T Shagautdinova ◽  
A M Likhter ◽  
K V Berezin ◽  
K N Dvoretsky ◽  
V V Nechaev ◽  
...  

Abstract Interaction of iohexol (Omnipaque), an X-Ray contrast agent, with a mimetic peptide of collagen (GPH)3 as one of the main components of biological tissues has been studied with the use of methods of classical molecular dynamics (GROMACS). Complex molecular modeling of the post-diffusion stage of optical clearing allowed to evaluate such parameters as the average number of hydrogen bonds, formed between the clearing agent and collagen per unit time, and the immersion agent’s effect on changes in the collagen peptide volume. The obtained results are compared with similar results for glycerol, a polyatomic alcohol, and with the existing experimental data on the efficiency of optical clearing of these immersion agents.


Sign in / Sign up

Export Citation Format

Share Document