Bioinspired Jumping Mobility Concepts for Rough Terrain Mobile Robots

Author(s):  
Omar Gilani ◽  
Pinhas Ben-Tzvi

Mobile robots face great challenges in terms of mobility when traversing rough terrain, especially obstacle filled environments. Current terrestrial locomotion mechanisms such as wheels, tracks, and legs, face difficulties surmounting obstacles equal to or greater than their own height. This is especially true for smaller robots. In this respect, bioinspired approaches offer some solutions. Some insects in particular tackle rough terrain locomotion by performing high powered jumps. Their morphology has evolved to create specialized energy storage structures, and their hind legs have adapted to provide improved mechanical leverage. This paper investigates jumping as employed by insects and develops principles pertinent for the design of a jumping robotic system. A mathematical model depicting bipedal jumping is presented. The model includes mechanical energy storage elements in the form of springs for the purpose of assessing jumping locomotion for robotic applications. This model will assist in analyzing jumping locomotion and presenting some insights, as well as rough dimensioning of system parameters to achieve desired jumping performance.

Author(s):  
Omar Gilani ◽  
Pinhas Ben-Tzvi

Nature provides various alternative locomotion strategies which could be applied to robotic systems. One such strategy is that of jumping, which enables centimeter to millimeter-scaled insects to traverse highly unstructured environments quickly and efficiently. These insects generate the required high magnitude power through specialized structures which store and rapidly release large amounts of energy. This paper presents an investigation into the morphology of natural jumpers and derives a generalized mathematical model based on them. The model describes mathematically the relationships present in a jumping system which uses a pause-and-leap jumping strategy. The use of springs as energy storage elements for such a jumping system is assessed. The discussion is then further extended to another bioinspired approach that can be applied to a jumping robot: that of gliding using foldable wings. The developed jumping and gliding mobility paradigm is analyzed and its feasibility for mobile robot applications is discussed.


Author(s):  
Rana Saha ◽  
Niloy Khutia ◽  
Rathindranath Maiti

Abstract An energy saving hydraulic system, known as load-sensing hydraulic system, to improve the efficiency of transmitting power from the pump to load has been studied in the present work. Due to the addition of the load sensing mechanism stability characteristics deteriorate in this system. A nonlinear mathematical model followed by a simulation model using SIMULINK has been developed to study the effect of system parameters on stability. Simulation results are verified with existing theoretical and experimental results.


Author(s):  
Jan Eggert ◽  
Bernd Ku¨nne

The determination of the overall condition of an intralogistic system is one of the significant requirements of an effective planning of maintenance activities. Conventional maintenance concepts like time-based or event-based concepts already reach their limitations. By the application of condition-based maintenance concepts the single activities take place when the reserve of abrasion of a component is nearly optimally used. The application of the smart drive concept helps to determine the condition of the system while data of stationary and mobile sensor units are gathered and evaluated. Another aspect helps to delay potential breakdowns by the adaption of certain system parameters depending on the actual system load. In that way the individual load on some components can be reduced which makes it possible to schedule an appropriate maintenance activity before the breakdown occurs. Hence the availability can be enhanced since the probability of breakdowns and unplanned maintenance activities can be reduced. To adapt system parameters based on the actual load of an intralogistic system a mathematical model is needed which describes the system behavior to a certain extent. Based on the method of DoE (Design of Experiments) such a model can be established. In the first place screening designs are necessary to determine significant factors and factor interactions. Subsequently more detailed regression experiments have to be performed to derive the mathematical model. The first step of this process (screening experiments) has been performed and will be discussed at one example in this paper while the second step which will be performed in future work (regression experiments) will be introduced and prepared. It will also be explained how the derived model will be used in a technical context at a roller conveyor as an example of an intralogistic system.


Micromachines ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 177
Author(s):  
Suzana Uran ◽  
Matjaž Malok ◽  
Božidar Bratina ◽  
Riko Šafarič

Constructing a micro-sized microfluidic motor always involves the problem of how to transfer the mechanical energy out of the motor. The paper presents several experiments with pot-like microfluidic rotational motor structures driven by two perpendicular sine and cosine vibrations with amplitudes around 10 μm in the frequency region from 200 Hz to 500 Hz. The extensive theoretical research based on the mathematical model of the liquid streaming in a pot-like structure was the base for the successful real-life laboratory application of a microfluidic rotational motor. The final microfluidic motor structure allowed transferring the rotational mechanical energy out of the motor with a central axis. The main practical challenge of the research was to find the proper balance between the torque, due to friction in the bearings and the motor’s maximal torque. The presented motor, with sizes 1 mm by 0.6 mm, reached the maximal rotational speed in both directions between −15 rad/s to +14 rad/s, with the estimated maximal torque of 0.1 pNm. The measured frequency characteristics of vibration amplitudes and phase angle between the directions of both vibrational amplitudes and rotational speed of the motor rotor against frequency of vibrations, allowed us to understand how to build the pot-like microfluidic rotational motor.


2004 ◽  
Author(s):  
Matthew J. Spenko ◽  
Karl D. Iagnemma ◽  
Steven Dubowsky

2015 ◽  
Vol 73 (6) ◽  
Author(s):  
Amir A. Bature ◽  
Salinda Buyamin ◽  
Mohamad N. Ahmad ◽  
Mustapha Muhammad ◽  
Auwalu A. Muhammad

In order to predict and analyse the behaviour of a real system, a simulated model is needed. The more accurate the model the better the response is when dealing with the real plant. This paper presents a model predictive position control of a Two Wheeled Inverted Pendulum robot. The model was developed by system identification using a grey box technique. Simulation results show superior performance of the gains computed using the grey box model as compared to common linearized mathematical model. 


2016 ◽  
Vol 7 (1) ◽  
pp. 446-450 ◽  
Author(s):  
Pascal G. Yot ◽  
Louis Vanduyfhuys ◽  
Elsa Alvarez ◽  
Julien Rodriguez ◽  
Jean-Paul Itié ◽  
...  

Determination of the mechanical energy storage performance of the aluminum fumarate metal–organic framework A520.


Sign in / Sign up

Export Citation Format

Share Document