The Application of Bioinspired Jumping Locomotion Principles to Mobile Robots: Modeling and Analysis

Author(s):  
Omar Gilani ◽  
Pinhas Ben-Tzvi

Nature provides various alternative locomotion strategies which could be applied to robotic systems. One such strategy is that of jumping, which enables centimeter to millimeter-scaled insects to traverse highly unstructured environments quickly and efficiently. These insects generate the required high magnitude power through specialized structures which store and rapidly release large amounts of energy. This paper presents an investigation into the morphology of natural jumpers and derives a generalized mathematical model based on them. The model describes mathematically the relationships present in a jumping system which uses a pause-and-leap jumping strategy. The use of springs as energy storage elements for such a jumping system is assessed. The discussion is then further extended to another bioinspired approach that can be applied to a jumping robot: that of gliding using foldable wings. The developed jumping and gliding mobility paradigm is analyzed and its feasibility for mobile robot applications is discussed.

2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Rui Wang ◽  
Ming Wang ◽  
Yong Guan ◽  
Xiaojuan Li

Obstacle avoidance is a key performance of mobile robots. However, its experimental verification is rather difficult, due to the probabilistic behaviors of both the robots and the obstacles. This paper presents the Markov Decision Process based probabilistic formal models for three obstacle-avoidance strategies of a mobile robot in an uncertain dynamic environment. The models are employed to make analyses in PRISM, and the correctness of the analysis results is verified by MATLAB simulations. Finally, the minimum time and the energy consumption are determined by further analyses in PRISM, which prove to be useful in finding the optimal strategy. The present work provides a foundation for the probabilistic formal verification of more complicated obstacle-avoidance strategies.


2017 ◽  
Vol 22 (1) ◽  
pp. 81-99 ◽  
Author(s):  
Z. Hendzel ◽  
Ł. Rykała

Abstract The work presents the dynamic equations of motion of a wheeled mobile robot with mecanum wheels derived with the use of Lagrange equations of the second kind. Mecanum wheels are a new type of wheels used in wheeled mobile robots and they consist of freely rotating rollers attached to the circumference of the wheels. In order to derive dynamic equations of motion of a wheeled mobile robot, the kinetic energy of the system is determined, as well as the generalised forces affecting the system. The resulting mathematical model of a wheeled mobile robot was generated with the use of Maple V software. The results of a solution of inverse and forward problems of dynamics of the discussed object are also published.


2013 ◽  
Vol 300-301 ◽  
pp. 378-381
Author(s):  
Thanh Tam Ho ◽  
Sang Yoon Lee

Selecting a suitable locomotion way for a mobile robot is critical for succeeding its mission. This paper introduces a cylinder-like robot that can locomote by means of either rolling or jumping on the ground. First, design of the robot is described to explain the mechanism for enabling rolling and jumping by using only one DC motor. Second, the design is analyzed in terms of energy efficiency and compared to a couple of hybrid mobile robots.


2017 ◽  
Vol 14 (4) ◽  
pp. 172988141772078 ◽  
Author(s):  
Xueshan Gao ◽  
Dengqi Cui ◽  
Wenzeng Guo ◽  
Yu Mu ◽  
Bin Li

A transformable wheel–track robot with the tail rod whose winding will coordinate the center of gravity of the robot is researched, and a theoretical basis for the stable climbing of the robot is provided. After a general introduction of the research, firstly the mechanical hardware and control hardware composition of the wheel–track robot is provided and the principles of its mechanical structure are illustrated. Secondly, through studying the fundamental constrains during the process of the robot climbing the obstacles, a mathematical model based on classical mechanics method is built to help analyze the dynamic principles of a wheel–track mobile robot climbing stairs. Thirdly, the dynamic stability analysis is carried out by analyzing not only the interaction among forces of track, track edge, and stair step but also the different stabilities of the robot when the track and the stairs have different touch points. Finally, an experiment of the modeling track robot climbing the stairs has convinced the effectiveness of the dynamic theories researched, which will be a beneficial reference for the future mobile robots obstacle climbing studies.


Author(s):  
Omar Gilani ◽  
Pinhas Ben-Tzvi

Mobile robots face great challenges in terms of mobility when traversing rough terrain, especially obstacle filled environments. Current terrestrial locomotion mechanisms such as wheels, tracks, and legs, face difficulties surmounting obstacles equal to or greater than their own height. This is especially true for smaller robots. In this respect, bioinspired approaches offer some solutions. Some insects in particular tackle rough terrain locomotion by performing high powered jumps. Their morphology has evolved to create specialized energy storage structures, and their hind legs have adapted to provide improved mechanical leverage. This paper investigates jumping as employed by insects and develops principles pertinent for the design of a jumping robotic system. A mathematical model depicting bipedal jumping is presented. The model includes mechanical energy storage elements in the form of springs for the purpose of assessing jumping locomotion for robotic applications. This model will assist in analyzing jumping locomotion and presenting some insights, as well as rough dimensioning of system parameters to achieve desired jumping performance.


2015 ◽  
Vol 789-790 ◽  
pp. 742-746 ◽  
Author(s):  
Valeriy Ivchenko ◽  
Petr Krug ◽  
Ekaterina Matyukhina ◽  
Sergey Pavelyev

The problems of design and implementation of remotely reconfigurable intelligence for space-based robotic systems and, specifically, mobile robots are highlighted. The classification of reconfiguration technologies, the specifications of remote reconfiguration, the functional structure of remotely reconfigurable intelligence are described. The space-based mobile robot-explorer "Turist" is presented.


2018 ◽  
Vol 7 (3.33) ◽  
pp. 28
Author(s):  
Asilbek Ganiev ◽  
Kang Hee Lee

In this paper, we used a robot operating system (ROS) that is designed to work with mobile robots. ROS provides us with simultaneous localization and mapping of the environment, and here it is used to autonomously navigate a mobile robot simulator between specified points. Also, when the mobile robot automatically navigates between the starting point and the target point, it bypasses obstacles; and if necessary, sets a new path of the route to reach the goal point.  


Sign in / Sign up

Export Citation Format

Share Document