Design and Analysis of Composite Ocean Current Turbine Blades Using NREL Codes

Author(s):  
Fang Zhou ◽  
Hassan Mahfuz ◽  
Gabriel M. Alsenas ◽  
Howard P. Hanson

Ocean current energy is at an early stage of development — a vital component in that is the design and analysis of turbine blades that would be used to generate the power. The ocean current turbine (OCT) is similar in function to wind turbines, capturing energy through the processes of hydrodynamic, rather than aerodynamic, lift or drag. OCT operates on many of the same principles as wind turbines and share similar design philosophies. NREL (National Renewable Energy Laboratory) has extensively investigated the design of wind turbine blades over the years and many codes have been developed. It is meaningful and prudent to take advantage of those codes and use them in the design of OCT blades. Currently available codes such as FoilCheck, PreComp, BModes, AeroDyn, FAST, etc. provides an excellent dynamic analysis of hollow composite wind turbine blades. Since OCT blades have PVC foam as core materials inside the skin, NREL codes could not be used directly. These core materials for the blade were necessary to fulfill the buoyancy requirement at ocean depth. A set of methods was therefore developed to design and analyze OCT blades where most of NREL codes could be utilized. The methods are as follows: DesignFOIL was first used to generate hydrofoil geometry (coordinates), and lift and drag coefficients for selected blade sections. FoilCheck was then used to calculate hydrofoil data for the entire range of ±180°. FoilCheck output files were later used as input for AeroDyn. In the next step, PreComp computed the section properties for the hollow composite OCT blade. Section properties of the core material such as extensional stiffness, flexural rigidity, and torsional rigidity were calculated separately and added to the properties computed by PreComp. Mode shapes and frequencies of OCT blades were computed using BModes. AeroDyn calculated the hydrodynamic lift and drag forces for the hydrofoil sections along the blade. In AeroDyn input file, kinematic viscosity, density and velocity were set to the values of seawater @ 1.05×10−6 m2/sec, 1025 kg/m3, and 1.7 m/s, respectively. Finally, FAST was used to obtain the dynamic response of three-bladed, conventional, horizontal-axis OCT. However, this analysis did not provide any stress calculations. In order to perform stress analysis, NuMAD code developed by Sandia National Laboratory was incorporated in the method. This allowed us to create ANSYS input files. Loads calculated by AeroDyn were then transported to ANSYS and a complete stress analysis was performed. Critical regions of stress concentration were identified — opening up an opportunity for materials failure and fatigue analysis. In summary, coupling of NREL codes, NuMAD, and ANSYS revealed a path way to achieve comprehensive design and analyses of OCT blades.

2018 ◽  
Vol 207 ◽  
pp. 02004
Author(s):  
M. Rajaram Narayanan ◽  
S. Nallusamy ◽  
M. Ragesh Sathiyan

In the global scenario, wind turbines and their aerodynamics are always subjected to constant research for increasing their efficiency which converts the abundant wind energy into usable electrical energy. In this research, an attempt is made to increase the efficiency through the changes in surface topology of wind turbines through computational fluid dynamics. Dimples on the other hand are very efficient in reducing air drag as is it evident from the reduction of drag and increase in lift in golf balls. The predominant factors influencing the efficiency of the wind turbines are lift and drag which are to be maximized and minimized respectively. In this research, surface of turbine blades are integrated with dimples of various sizes and arrangements and are analyzed using computational fluid dynamics to obtain an optimum combination. The analysis result shows that there is an increase in power with about 15% increase in efficiency. Hence, integration of dimples on the surface of wind turbine blades has helped in increasing the overall efficiency of the wind turbine.


Fluids ◽  
2021 ◽  
Vol 6 (7) ◽  
pp. 257
Author(s):  
Samuel Mitchell ◽  
Iheanyichukwu Ogbonna ◽  
Konstantin Volkov

The design of wind turbines requires a deep insight into their complex aerodynamics, such as dynamic stall of a single airfoil and flow vortices. The calculation of the aerodynamic forces on the wind turbine blade at different angles of attack (AOAs) is a fundamental task in the design of the blades. The accurate and efficient calculation of aerodynamic forces (lift and drag) and the prediction of stall of an airfoil are challenging tasks. Computational fluid dynamics (CFD) is able to provide a better understanding of complex flows induced by the rotation of wind turbine blades. A numerical simulation is carried out to determine the aerodynamic characteristics of a single airfoil in a wide range of conditions. Reynolds-averaged Navier–Stokes (RANS) equations and large-eddy simulation (LES) results of flow over a single NACA0012 airfoil are presented in a wide range of AOAs from low lift through stall. Due to the symmetrical nature of airfoils, and also to reduce computational cost, the RANS simulation is performed in the 2D domain. However, the 3D domain is used for the LES calculations with periodical boundary conditions in the spanwise direction. The results obtained are verified and validated against experimental and computational data from previous works. The comparisons of LES and RANS results demonstrate that the RANS model considerably overpredicts the lift and drag of the airfoil at post-stall AOAs because the RANS model is not able to reproduce vorticity diffusion and the formation of the vortex. LES calculations offer good agreement with the experimental measurements.


Author(s):  
U. Nopp-Mayr ◽  
F. Kunz ◽  
F. Suppan ◽  
E. Schöll ◽  
J. Coppes

AbstractIncreasing numbers of wind power plants (WPP) are constructed across the globe to reduce the anthropogenic contribution to global warming. There are, however, concerns on the effects of WPP on human health as well as related effects on wildlife. To address potential effects of WPP in environmental impact assessments, existing models accounting for shadow flickering and noise are widely applied. However, a standardized, yet simple and widely applicable proxy for the visibility of rotating wind turbines in woodland areas was largely lacking up to date. We combined land cover information of forest canopy extracted from orthophotos and airborne laser scanning (LiDAR) data to represent the visibility of rotating wind turbines in five woodland study sites with a high spatial resolution. Performing an in-situ validation in five study areas across Europe which resulted in a unique sample of 1738 independent field observations, we show that our approach adequately predicts from where rotating wind turbine blades are visible within woodlands or not. We thus provide strong evidence, that our approach yields a valuable proxy of the visibility of moving rotor blades with high resolution which in turn can be applied in environmental impact assessments of WPP within woodlands worldwide.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1124
Author(s):  
Leon Mishnaevsky Mishnaevsky

Various scenarios of end-of-life management of wind turbine blades are reviewed. “Reactive” strategies, designed to deal with already available, ageing turbines, installed in the 2000s, are discussed, among them, maintenance and repair, reuse, refurbishment and recycling. The main results and challenges of “pro-active strategies”, designed to ensure recyclability of new generations of wind turbines, are discussed. Among the main directions, the wind turbine blades with thermoplastic and recyclable thermoset composite matrices, as well as wood, bamboo and natural fiber-based composites were reviewed. It is argued that repair and reuse of wind turbine blades, and extension of the blade life has currently a number of advantages over other approaches. While new recyclable materials have been tested in laboratories, or in some cases on small or medium blades, there are remaining technological challenges for their utilization in large wind turbine blades.


2014 ◽  
Vol 1014 ◽  
pp. 124-127
Author(s):  
Zhi Qiang Xu ◽  
Jian Huang

Wind turbines consists of three key parts, namely, wind wheels (including blades, hub, etc.), cabin (including gearboxes, motors, controls, etc.) and the tower and Foundation. Wind turbine wheel is the most important part ,which is made up of blades and hubs. Blade has a good aerodynamic shape, which will produce aerodynamic in the airflow rotation, converting wind energy into mechanical energy, and then, driving the generator into electrical energy by gearbox pace. Wind turbine operates in the natural environment, their load wind turbine blades are more complex. Therefore load calculations and strength analysis for wind turbine design is very important. Wind turbine blades are core components of wind turbines, so understanding of their loads and dynamics by which the load on the wind turbine blade design is of great significance.


Author(s):  
Yogesh Ramesh Patel

This paper provides a brief overview of the research in the field of Fluid-structure interaction in Wind Turbines. Fluid-Structure Interaction (FSI) is the interplay of some movable or deformable structure with an internal or surrounding fluid flow. Flow brought about vibrations of two airfoils used in wind turbine blades are investigated by using a strong coupled fluid shape interplay approach. The approach is based totally on a regularly occurring Computational Fluid Dynamics (CFD) code that solves the Navier-Stokes equations defined in Arbitrary Lagrangian-Eulerian (ALE) coordinates by way of a finite extent method. The need for the FSI in the wind Turbine system is studied and comprehensively presented.


Author(s):  
Matthew Lennie ◽  
Georgios Pechlivanoglou ◽  
David Marten ◽  
Christian Navid Nayeri ◽  
Oliver Paschereit

To certify a Wind Turbine the standard processes set out by the GL guidelines and the IEC61400 demand a large number of simulations in order to justify the safe operation of the machine in all reasonably probable scenarios. The result of this rather demanding process is that the simulations rely on lower fidelity methods such as the Blade Element Momentum (BEM) method. The BEM method relies on a number of simplified inputs including the coefficient of lift and drag polar data (usually referred to as polars). These polars are usually either measured experimentally, generated using tools such as XFoil or, in some cases obtained using 2D CFD. It is typical to then modify these polars in order to make them suitable for aeroelastic simulations. Some of these modifications include 360° angle of attack extrapolation methods and polar modifications to account for 3D effects. Many of these modifications can be perceived to be a black art due to the manual selection of coefficients. The polars can misrepresent reality for many reasons, for example, inflow turbulence can affect measurements obtained in wind tunnels. Furthermore, on real wind turbine blades leading edge erosion can reduce performance. Simulated polars can even vary significantly due to the choice of turbulence models. Stack these effects on top of the uncertainties caused by yaw error, pitch error and dynamic stall and one can clearly see an operating environment hostile to accurate simulations. Colloquial evidence suggests that experienced designers would account for all of these sources of errors methodically, however, this is not reflected by the certification process. A review of experimental data and literature was performed to identify some of the inaccuracies in wind turbine polars. Significant variations were found between a range of 2D polar techniques and wind tunnel measurements. A sensitivity study was conducted using the aeroelastic simulation code FAST (National Renewable Energy Laboratory) with lift and drag polars sourced using different methods. The results were post-processed to give comparisons the rotor blade fatigue damage; variations in accumulated damages reached levels of 164%. This variation is not disastrous but is certainly enough to motivate a new approach for certifying the aerodynamic performance of wind turbines. Such an approach would simply see the source of polar data and all post-processing steps documented and included in the checks performed by certification bodies.


2018 ◽  
Vol 7 (3.27) ◽  
pp. 456
Author(s):  
Albi . ◽  
M Dev Anand ◽  
G M. Joselin Herbert

The aerofoils of wind turbine blades have crucial influence on aerodynamic efficiency of wind turbine. There are numerous amounts of research being performed on aerofoils of wind turbines. Initially, I have done a brief literature survey on wind turbine aerofoil. This project involves the selection of a suitable aerofoil section for the proposed wind turbine blade. A comprehensive study of the aerofoil behaviour is implemented using 2D modelling. NACA 4412 aerofoil profile is considered for analysis of wind turbine blade. Geometry of this aerofoil is created using GAMBIT and CFD analysis is carried out using ANSYS FLUENT. Lift and Drag forces along with the angle of attack are the important parameters in a wind turbine system. These parameters decide the efficiency of the wind turbine. The lift force and drag force acting on aerofoil were determined with various angles of attacks ranging from 0° to 12° and wind speeds. The coefficient of lift and drag values are calculated for 1×105 Reynolds number. The pressure distributions as well as coefficient of lift to coefficient of drag ratio of this aerofoil were visualized. The CFD simulation results show close agreement with those of the experiments, thus suggesting a reliable alternative to experimental method in determining drag and lift.


2013 ◽  
Vol 558 ◽  
pp. 84-91 ◽  
Author(s):  
Paritosh Giri ◽  
Jung Ryul Lee

With commercially viable global wind power potential, wind energy penetration is further expected to rise, as will the related problems. One issue is the collision of wind turbine blades with the tower during operation. Structured health monitoring is required to improve operational safety, minimize the risk of sudden failure or total breakdown, ensure reliable power generation, and reduce wind turbine life cycle costs. Large numbers of sensors such as fiber Bragg grating and piezoelectric devices have been attached to the structure, a design that is uneconomical and impractical for use in large wind turbines. This study proposes a single laser displacement sensor (LDS) system in which all of the rotating blades could be cost-effectively evaluated. Contrary to the approach of blade sensor installation, the LDS system is installed in the tower to enable noncontact blade displacement monitoring. The concept of a noncontact sensor and actuator and their energy delivery device installation in the tower will enable various approaches for wind turbine structural health monitoring. Blade bolt loosening causes deflection in the affected blade. Similarly, nacelle tilt or mass loss damage in the blade will result in changes in blade deflection, but the proposed system can identify such problems with ease. With the need of more energy, the sizes of wind blades are getting bigger and bigger. Due to the large size of wind turbine, nowadays wind turbines are installed very high above the ground or water level. It is impractical to monitor the results from LDS through wired connection in these cases. Hence, the wired connection of LDS to base (monitoring) station must be replaced by a wireless solution. This wireless solution is achieved using Zigbee technology. Zigbee operates in the industrial, scientific and medical (ISM) radio bands, typically 2.4 GHz, 915 MHz and 868 MHz. The output from the LDS is fed to the microcontroller which acts as an analog to digital converter. The output from the microcontroller is connected to the Zigbee transceiver module, which transmits the data and at the other end, the zigbee reads the data and displays on the PC from where user can monitor the condition of wind blades.


Author(s):  
Sayem Zafar ◽  
Mohamed Gadalla

A small horizontal axis wind turbine rotor was designed and tested with aerodynamically efficient, economical and easy to manufacture blades. Basic blade aerodynamic analysis was conducted using commercially available software. The blade span was constrained such that the complete wind turbine can be rooftop mountable with the envisioned wind turbine height of around 8 m. The blade was designed without any taper or twist to comply with the low cost and ease of manufacturing requirements. The aerodynamic analysis suggested laminar flow airfoils to be the most efficient airfoils for such use. Using NACA 63-418 airfoil, a rectangular blade geometry was selected with chord length of 0.27[m] and span of 1.52[m]. Glass reinforced plastic was used as the blade material for low cost and favorable strength to weight ratio with a skin thickness of 1[mm]. Because of the resultant velocity changes with respect to the blade span, while the blade is rotating, an optimal installed angle of attack was to be determined. The installed angle of attack was required to produce the highest possible rotation under usual wind speeds while start at relatively low speed. Tests were conducted at multiple wind speeds with blades mounted on free rotating shaft. The turbine was tested for three different installed angles and rotational speeds were recorded. The result showed increase in rotational speed with the increase in blade angle away from the free-stream velocity direction while the start-up speeds were found to be within close range of each other. At the optimal angle was found to be 22° from the plane of rotation. The results seem very promising for a low cost small wind turbine with no twist and taper in the blade. The tests established that non-twisted wind turbine blades, when used for rooftop small wind turbines, can generate useable electrical power for domestic consumption. It also established that, for small wind turbines, non-twisted, non-tapered blades provide an economical yet productive alternative to the existing complex wind turbine blades.


Sign in / Sign up

Export Citation Format

Share Document