sensitivity study
Recently Published Documents


TOTAL DOCUMENTS

2420
(FIVE YEARS 505)

H-INDEX

66
(FIVE YEARS 7)

Geotechnics ◽  
2022 ◽  
Vol 2 (1) ◽  
pp. 91-113
Author(s):  
Adam G. Taylor ◽  
Jae H. Chung

The present paper provides a qualitative discussion of the evolution of contact traction fields beneath rigid shallow foundations resting on granular materials. A phenomenological similarity is recognized in the measured contact traction fields of rigid footings and at the bases of sandpiles. This observation leads to the hypothesis that the stress distributions are brought about by the same physical phenomena, namely the development of arching effects through force chains and mobilized intergranular friction. A set of semi-empirical equations are suggested for the normal and tangential components of this contact traction based on past experimental measurements and phenomenological assumptions of frictional behaviors at the foundation system scale. These equations are then applied to the prescribed boundary conditions for the analysis of the settlement, resistance, and stress fields in supporting granular materials beneath the footing. A parametric sensitivity study is performed on the proposed modelling method, highlighting solutions to the boundary-value problems in an isotropic, homogeneous elastic half-space.


Author(s):  
Salah Ouldboukhitine ◽  
Sofiane Amziane ◽  
Maroua Benkhaled

The energy performance of buildings represents a major challenge in terms of sustainable development. The buildings and buildings construction sectors combined are responsible for over one-third of global final energy consumption and nearly 40% of total direct and indirect CO2 emissions. In order to reduce the energy consumption of buildings and their harmful impact on the environment, special attention has been paid in recent years to the use of bio-based materials. Several works have been carried out in the last decades in order to model the coupled heat, air and moisture transfers in the building envelope but the difficulties lies in the identification of numerous parameters that the HAM proposed models use. In the present paper, a sensitivity study regarding the HAM parameters is implemented in order to apprehend the most determining parameters during the transfer processes. A reduced model based on these parameters is then determined.


2022 ◽  
Vol 933 ◽  
Author(s):  
Lubomír Bureš ◽  
Yohei Sato

The dynamics of the microlayer beneath a growing bubble in nucleate boiling significantly impacts the heat-transfer characteristics of the process. The minute thickness of the microlayer motivates the use of direct numerical simulation (DNS) to model its behaviour if empirical models are to be avoided. In this work, we develop a computational strategy for utilising DNS to model nucleate boiling by resolving explicitly the microlayer, directly coupling, in a stable manner, the mass, momentum and energy conservation equations with the conjugate heat transfer between the solid and fluid domains. To this end, closure models for the treatment of interfacial heat transfer and the dynamic contact angle are introduced and substantiated. The computational procedure is validated against relevant experimental data recently measured at the Massachusetts Institute of Technology; it is shown that the main observed growth features and surface heat-transfer characteristics are well reproduced using our model. We go on to perform a sensitivity study of the dependence of the initial microlayer thickness distribution on the applied superheat and fluid properties. The results indicate that an equation derived from lubrication theory captures the observed trends well. Finally, a first demonstration of DNS of boiling with an explicitly resolved microlayer in three-dimensional Cartesian coordinates is presented in one of the appendices.


2022 ◽  
Author(s):  
Michael D. Kroells ◽  
Amal Sahai ◽  
Thomas E. Schwartzentruber

2022 ◽  
Vol 12 (01) ◽  
pp. 86-104
Author(s):  
Adjon Anderson Kouassi ◽  
Brahima Kone ◽  
Siélé Silue ◽  
Alima Dajuma ◽  
Toure E. N’datchoh ◽  
...  

Author(s):  
Fábio Masini Rodrigues ◽  
Armando Lopes Moreno Júnior ◽  
Jorge Munaiar Neto

ABSTRACT For the dimensioning of structural elements in fire situation, simplified equations and parameters are commonly used in analytical equations or numerical models. More complex equations or simplified values can be chosen by the designer for determine materials properties in high temperature in numerical models, however, numerical modeling can be quite sensitive to the variation of some of the physical and mechanical properties. In this paper, the sensitivity of the numerical model in relation to the values according to the level of simplification chosen was evaluated, presenting an analysis in relation to the results found to contribute to the choice of these parameters and presenting the indications found in the literature. In this sense, this work presents a study of sensitivity to the variation of the values of steel and concrete properties, presented in the Eurocode and Brazilian standards, in addition to the moisture content and emissivity of the surface exposed to fire, for the dimensioning, in a fire situation, of steel tube columns, of circular and square section, filled with concrete. The studies were carried out via numerical modeling developed in the software ABAQUS. It was verified that the resulting emissivity values equal to 0.7 or 0.8, recommended in the literature, are conservative, and the choice of either does not bring significant changes in the temperature field obtained for the structural elements under analysis. It was also verified that the concrete moisture content is a relevant aspect for the formation of its temperature field, also affecting, but to a lesser extent, the steel temperature. Regarding the physical and mechanical properties of the materials, this sensitivity study suggests the adoption of the values from the equations presented in Eurocodes, without simplifications, and with the specific heat and thermal conductivity of the concrete, adopted in accordance with the Eurocode 4.


MAUSAM ◽  
2021 ◽  
Vol 52 (1) ◽  
pp. 163-174
Author(s):  
A. A. DEO ◽  
P. S. SALVEKAR ◽  
S. K. BEHERA

The IITM Reduced Gravity (IRG) ocean model is employed to investigate the influence of tropical cyclone moving in different directions in Indian Seas. Some of the observed storm tracks in the Arabian Sea and Bay of Bengal are considered which have northward and westward movement. Sensitivity study is carried out for initial position of the storm at (90° E, 10° N) and moving in different directions. For westward moving cyclones the right bias in the model upper-layer thickness deviation (ULTD) field disappears. In an another experiment of westward moving cyclone originating at different latitudes, the ocean response is found to be sensitive to the Coriolis parameter (f). The surface currents as well as ULTD reduce, as f increases. The amplitude and the wavelength of inertia gravity wave increase with decrease in f, in the wake of the cyclone. This study helps to determine the upwelling region arising due to movement of the cyclone.


Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 79
Author(s):  
Jonatán Felipe ◽  
Marta Sigut ◽  
Leopoldo Acosta

U-V disparity is a technique that is commonly used to detect obstacles in 3D scenes, modeling them as a set of vertical planes. In this paper, the authors describe the general lines of a method based on this technique for fully reconstructing 3D scenes, and conduct an analytical study of its performance and sensitivity to errors in the pitch angle of the stereoscopic vision system. The equations of the planes calculated for a given error in this angle yield the deviation with respect to the ideal planes (with a zero error in the angle) for a large test set consisting of planes with different orientations, which is represented graphically to analyze the method’s qualitative and quantitative performance. The relationship between the deviation of the planes and the error in the pitch angle is observed to be linear. Two major conclusions are drawn from this study: first, that the deviation between the calculated and ideal planes is always less than or equal to the error considered in the pitch angle; and second, that even though in some cases the deviation of the plane is zero or very small, the probability that a plane of the scene deviates from the ideal by the greatest amount possible, which matches the error in the pitch angle, is very high.


Sign in / Sign up

Export Citation Format

Share Document