Numerical Study of Cruciform Specimens for Biaxial Tensile Tests

Author(s):  
Luis F. Puente Medellín ◽  
Antonio Balvantin ◽  
J. A. Diosdado-De la Peña

This paper presents a numerical study of different geometries of cruciform specimens for biaxial tensile tests. The aim of these specimens is to be used on fixtures for biaxial tests mounted in universal testing machines. For the study, a model of isotropic material for steel sheet metal specimens was considered. Thus, only the mechanical properties of the sheet metal in the rolling direction were considered in the simulations. In this numerical analysis, the normal stress distribution and the consequent shear stress were studied. Additionally, the effect of the inclusion of multiple slots as well as a thickness reduction on the normal and shear stresses were assessed. Hence, a specimen in which a uniform normal stress distribution with zero shear stress, is necessary. The results of the analysis show that a specimen with features, multiple slots and a thickness reduction in the central area, provides a better performance in the simulations than dismissing any of these characteristics. Finally, a specimen model suitable for the mentioned test is proposed according to the obtained numerical results and the feasibility of manufacture of the experimental sample-test.

1996 ◽  
Vol 12 (03) ◽  
pp. 167-171
Author(s):  
G. Bezine ◽  
A. Roy ◽  
A. Vinet

A finite-element technique is used to predict the shear stress and normal stress distribution in adherends for polycarbonate/polycarbonate single lap joints subjected to axial loads. Numerical and photoelastic results are compared so that a validation of the numerical model is obtained. The influences on stresses of the overlap length and the shape of the adherends are studied.


Author(s):  
Е.Г. Хитров ◽  
А.В. Андронов ◽  
Е.В. Нестерова

Решение фундаментальной задачи Буссинеска широко используется в технических науках и позволяет эффективно решать широкий спектр задач науки о лесозаготовительном производстве. На его основе удается получить практически значимые результаты в области оценки распределения напряжений, возникающих в обрабатываемом материале под воздействием рабочего органа. Цель нашего исследования - проанализировать результаты расчетов и установить соотношение максимального значения касательного напряжения и среднего значения давления по пятну контакта рабочего органа с обрабатываемом материалом. Теоретическую основу работы составляют уравнения распределения нормальных и касательных напряжений, возникающих в упругом полупространстве при вдавливании в него жесткого клина. В результате анализа теоретических расчетов показано, что характер затухания нормального напряжения по глубине деформируемого массива материала с высокой точностью аппроксимируется квадратичной функцией (на основе полученной приближенной функции выполнено сопоставление среднего давления по пятну контакта индентора с массивом и нормального напряжения по глубине массива). При этом, как показали результаты расчетов, функция распространения касательного напряжения в деформируемом массиве имеет экстремум. Выполнено сопоставление полученных данных по значению экстремума функции касательного напряжения со значением приближенной функции нормального напряжения на границе контакта индентора сдеформируемым массивом. В результате показано, что максимальное по модулю касательное напряжение составляет 11-12% среднего контактного давления. Расчеты проведены при варьировании коэффициента Пуассона материала массива, установленное соотношение остается практически неизменным. Solution of fundamental Boussinesq’s problem is widely used in technical sciences and allows effectively solving a wide range of problems in forestry science. On its basis, it is possible to obtain practically significant results in the field of assessing the distribution of stresses arising in processed material under the influence of a working body. The purpose of our study is to analyze the results of calculations and establish the ratio of the maximum value of the shear stress and the average pressure over the contact patch of the working body with the material being processed. The theoretical basis of the work is formed by the equations for the distribution of normal and tangential stresses arising in an elastic half-space when a rigid cone is pressed into it. As a result of the analysis of the results of theoretical calculations, it was shown that the character of the normal stress distribution over the depth of the deformed massif of material is approximated with high accuracy by a quadratic function (based on the obtained approximate function, the average pressure over the contact patch of the indenter with the massif and the normal stress over the depth of the massif were compared). In this case, as shown by the results of calculations, the function of the shear stress distribution in the deformed massif has the extremum. Comparison of the obtained data on the value of the extremum of the shear stress function with the value of the approximate normal stress function at the interface of the indenter contact with the deformable mass is performed. As a result, it is shown that the maximum shear stress in absolute value is 11-12% of the average contact pressure. The calculations were carried out with varying Poisson's ratio of the massif material; the established ratio remains practically unchanged.


Mathematics ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 596
Author(s):  
Babak Lashkar-Ara ◽  
Niloofar Kalantari ◽  
Zohreh Sheikh Khozani ◽  
Amir Mosavi

One of the most important subjects of hydraulic engineering is the reliable estimation of the transverse distribution in the rectangular channel of bed and wall shear stresses. This study makes use of the Tsallis entropy, genetic programming (GP) and adaptive neuro-fuzzy inference system (ANFIS) methods to assess the shear stress distribution (SSD) in the rectangular channel. To evaluate the results of the Tsallis entropy, GP and ANFIS models, laboratory observations were used in which shear stress was measured using an optimized Preston tube. This is then used to measure the SSD in various aspect ratios in the rectangular channel. To investigate the shear stress percentage, 10 data series with a total of 112 different data for were used. The results of the sensitivity analysis show that the most influential parameter for the SSD in smooth rectangular channel is the dimensionless parameter B/H, Where the transverse coordinate is B, and the flow depth is H. With the parameters (b/B), (B/H) for the bed and (z/H), (B/H) for the wall as inputs, the modeling of the GP was better than the other one. Based on the analysis, it can be concluded that the use of GP and ANFIS algorithms is more effective in estimating shear stress in smooth rectangular channels than the Tsallis entropy-based equations.


1994 ◽  
Vol 29 (4) ◽  
pp. 393-398 ◽  
Author(s):  
R. Ramesh Kumar ◽  
G. Venkateswara Rao ◽  
K.S. Suresh

2018 ◽  
Vol 147 ◽  
pp. 01005
Author(s):  
Jonie Tanijaya

This study is carried out to evaluate the potential of three hybrid T-beams with web openings theoretical shear stresses distribution. The shear stresses at the opening edges were plotted at the working stage, yielding stage and collapse stage for these three tested beams. The available experimental results from the previous research was compared to the finite element results as well as the developed analytical. The shear stress distribution at the middle of the top and bottom chords of the opening in pure bending region are zero. At the upper and lower corners of the opening occurs the maximum shear stresses. The maximum shear stress occurs at the right lower corner chord at the high moment edge and at the left upper corner chord at the low moment edge in beams with openings at high shear and high flexural – shear region. Furthermore, an extensive parametric study is performed on these beams to find the distributing ratio of the shear force between the opening chords. The shear force at an opening in hybrid R/C T-beam is carried by the top and bottom chords of the opening according to the area – moment of inertia root ratio with the correction factor 0.70.


2019 ◽  
Vol 974 ◽  
pp. 659-664 ◽  
Author(s):  
Sergey Saiyan ◽  
Alexander Paushkin

A study on the Saint-Venant principle implementation for a rigidly clamped I-beam loaded with various loads at the free end was carried out. When using the software package LIRA SAPR, the tangential stresses perturbations zones are determined in order to compare their distribution with the materials resistance solution.


2014 ◽  
Vol 941-944 ◽  
pp. 1629-1632 ◽  
Author(s):  
Ye Sheng Zhong ◽  
Li Ping Shi ◽  
Ming Wei Li ◽  
Jia Yu ◽  
Jian Han Liang ◽  
...  

A numerical study using finite element analysis (FEA) was performed to investigate the thermal, shear and radial stresses developed in MAO coating on substrate of TC4 under thermal cycle loading. The four-node quadrilateral thermal solid element PLANE55 and four-node quadrilateral structural solid element PLANE42 with axisymmetric option was used to model the temperature distribution and thermal stress field of the MAO coating on TC4 substrates. The thermal stress, radial stress and shear stress along the thickness in film/substrate system are analyzed systematically under different thermal cycle loading. It is found that the thermal stress of MAO coating exhibits a linear relationship with thickness of substrate, but it exhibit a parabolic relationship with the thickness of the coating. The radial stress and shear stress distribution of the coating–substrate combination are also calculated. It is observed that high tensile shear stress of MAO coating on TC4 substrate reduces its adhesive strength but high-compressive shear stress improves its adhesive strength.


2003 ◽  
Vol 125 (5) ◽  
pp. 628-638 ◽  
Author(s):  
Masako Sugihara-Seki ◽  
Geert W. Schmid-Scho¨nbein

Recent in-vivo and in-vitro evidence indicates that fluid shear stress on the membrane of leukocytes has a powerful control over several aspects of their cell function. This evidence raises a question about the magnitude of the fluid shear stress on leukocytes in the circulation. The flow of plasma on the surface of a leukocyte at a very low Reynolds number is governed by the Stokes equation for the motion of a Newtonian fluid. We numerically estimated the distribution of fluid shear stress on a leukocyte membrane in a microvessel for the cases when the leukocyte is freely suspended, as well as rolling along or attached to a microvessel wall. The results indicate that the fluid shear stress distribution on the leukocyte membrane is nonuniform with a sharp increase when the leukocyte makes membrane attachment to the microvessel wall. In a microvessel (10 μm diameter), the fluid shear stress on the membrane of a freely suspended leukocyte (8 μm diameter) is estimated to be several times larger than the wall shear stress exerted by the undisturbed Poiseuille flow, and increases on an adherent leukocyte up to ten times. High temporal stress gradients are present in freely suspended leukocytes in shear flow due to cell rotation, which are proportional to the local shear rate. In comparison, the temporal stress gradients are reduced on the membrane of leukocytes that are rolling or firmly adhered to the endothelium. High temporal gradients of shear stress are also present on the endothelial wall. At a plasma viscosity of 1 cPoise, the peak shear stresses for suspended and adherent leukocytes are of the order of 10 dyn/cm2 and 100 dyn/cm2, respectively.


2011 ◽  
Vol 677 ◽  
pp. 483-502 ◽  
Author(s):  
C.-F. TAI ◽  
S. BIAN ◽  
D. HALPERN ◽  
Y. ZHENG ◽  
M. FILOCHE ◽  
...  

The liquid lining in small human airways can become unstable and form liquid plugs that close off the airways. Direct numerical simulations are carried out on an airway model to study this airway instability and the flow-induced stresses on the airway walls. The equations governing the fluid motion and the interfacial boundary conditions are solved using the finite-volume method coupled with the sharp interface method for the free surface. The dynamics of the closure process is simulated for a viscous Newtonian film with constant surface tension and a passive core gas phase. In addition, a special case is examined that considers the core dynamics so that comparisons can be made with the experiments of Bian et al. (J. Fluid Mech., vol. 647, 2010, p. 391). The computed flow fields and stress distributions are consistent with the experimental findings. Within the short time span of the closure process, there are large fluctuations in the wall shear stress. Furthermore, dramatic velocity changes in the film during closure indicate a steep normal stress gradient on the airway wall. The computational results show that the wall shear stress, normal stress and their gradients during closure can be high enough to injure airway epithelial cells.


Sign in / Sign up

Export Citation Format

Share Document