Array Jet Impingement Onto High Porosity Thin Metal Foams at Zero Jet-to-Foam Spacing

Author(s):  
Prashant Singh ◽  
Mingyang Zhang ◽  
Jaideep Pandit ◽  
Roop L. Mahajan

Metal foams enhance heat transfer rates by providing significant increase in wetted surface area and by thermal dispersion caused by flow mixing induced by the tortuous flow paths. Further, jet impingement is also an effective method of enhancing local convective heat transfer rates. In the present study, we have carried out an experimental investigation to study the combined effect of the two thermal performance-enhancement mechanisms. To this end, we conducted a set of experiments to determine convective heat transfer rates by impinging an array of jets onto thin metal foams attached on a uniformly heated smooth aluminum plate simulating a high heat-dissipating chip. The metal foams used were high porosity aluminum foams (ε∼0.94–0.96) with pore densities of 5 ppi, 10 ppi and 20 ppi (ppi: pores per inch) with thicknesses of 19 mm, 12.7 mm and 6.35 mm, respectively. With the jet-to-foam distance (z/d) set to zero, we conducted experiments with values of jet-to-jet spacing (x/d = y/d) of 2, 3 and 5. The jet plate featured an array of 5 × 5 cylindrical jet-issuing nozzles. The normalized jet-to-jet distance was varied by changing the jet diameter and keeping the jet center-to-center distance constant. Steady state heat transfer and pressure drop experiments were carried out for Reynolds number (based on jet diameter) ranging from 2500 to 10000. We have found that array impingement on thin foams leads to a significant enhancement in heat transfer compared to normal impingement over smooth surfaces. The gain in heat transfer was greatest for the 20 ppi foam (∼2.3 to 2.8 times that for the plain surface smooth target). However, this enhancement came at a significant increase of about 2.85 times in the plenum static pressure. With the pressure drop penalty taken into consideration, the x/d = 3 jet plate for the 20 ppi foam and x/d = 2 jet plate for the 10 ppi foam were found to be the most efficient cooling designs amongst the 18 cooling designs investigated in the present study.

Author(s):  
L. W. Jin ◽  
C. F. Ma ◽  
M. Zhao ◽  
X. Z. Meng ◽  
W. B. Kang ◽  
...  

Due to the characteristics of large surface area-to-volume ratio and inter-connected ligament structure, open-cell metal foams are promising materials for enhancing heat transfer in forced convection and have been researched for thermal applications in thermal management systems, air-cooled condensers and compact heat sinks for power electronics. However, the tortuous complex flow path inside metal foams leads to relatively higher pressure drop, which requires larger system pumping power. Hence, it is important to study the heat transfer performance of metal foam compared to its flow resistance characteristics. Detailed experimental study of forced convection subjected to constant heat flux in metal foams is conducted in the present paper. The objective of the investigation is to compare the heat transfer performance and hydraulic characteristics of aluminum foams with different pore densities. The tested aluminium foam samples are of 50.0mm (L) × 25.0mm (W) × 12.0mm (H) in geometric dimensions and pore densities are of 5ppi, 10ppi and 40ppi, respectively. Experiments are performed in forced convective heat transfer using deionized water as the cooling fluid. To minimize the heat loss, the test section is built adiabatically with Teflon and polycarbonate materials. The inlet flow velocity, the temperature distribution on the heating surface and the pressure drop across the metal form are measured. Based on the analysis of experimental data, it is found that convective heat transfer performance in high ppi foam is higher than that in low ppi foam, while the pressure drop shows the opposite trend for a given flow rate.


Author(s):  
Srivatsan Madhavan ◽  
Prashant Singh ◽  
Srinath Ekkad

High-porosity metal foams are known for providing high heat transfer rates, as they provide a significant increase in wetted surface area as well as highly tortuous flow paths resulting in enhanced mixing. Further, jet impingement offers high convective cooling, particularly at the jet footprint areas on the target surface due to flow stagnation. In this study, high-porosity thin metal foams were subjected to array jet impingement, for a special crossflow scheme. High porosity (92.65%), high pore density (40 pores per inch (ppi)), and thin foams (3 mm) have been used. In order to reduce the pumping power requirements imposed by full metal foam design, two striped metal foam configurations were also investigated. For that, the jets were arranged in 3 × 6 array (x/dj = 3.42, y/dj = 2), such that the crossflow is dominantly sideways. Steady-state heat transfer experiments have been conducted for varying jet-to-target plate distance z/dj = 0.75, 2, and 4 for Reynolds numbers ranging from 3000 to 12,000. The baseline case was jet impingement onto a smooth target surface. Enhancement in heat transfer due to impingement onto thin metal foams has been evaluated against the pumping power penalty. For the case of z/dj = 0.75 with the base surface fully covered with metal foam, an average heat transfer enhancement of 2.42 times was observed for a concomitant pressure drop penalty of 1.67 times over the flow range tested.


2020 ◽  
Author(s):  
Vivek Subramaniam Sambamurthy ◽  
Srivatsan Madhavan ◽  
Prashant Singh ◽  
Srinath V. Ekkad

Abstract An experimental investigation was carried out to study heat transfer and fluid flow in high porosity (93%) thin metal foams subjected to array jet impingement, under maximum and intermediate crossflow exit schemes. Separate effects of pore-density and jet-to-target spacing (z/d) have been studied. To this end, for a fixed pore-density of 40PPI foams, three different jet-to-target spacing (z/d=1, 2, 6) were investigated, and for a fixed z/d of 6, three different pore-density of 5, 20 and 40PPI were investigated. The jet diameter-based Reynolds number was varied between 3,000-12,000. Experiments were carried out to characterize local flow distribution and Nusselt numbers for different jet impingement configurations. The heat transfer results were obtained through steady-state experiments. Local flow measurements show that, as z/d decreases, the mass flux distributions are increasingly skewed with higher mass flow rates near the exits. Heat transfer enhancement has been calculated and the optimum foam configuration has been deduced from the pumping power. It was observed that Nusselt number increases with increasing pore density at a fixed z/d and reduces with increase in z/d at constant pore density. Intermediate crossflow had higher heat transfer than maximum crossflow with significantly lower pumping power. Under a constant pumping power condition, z/d = 2, 40ppi foam provided an average enhancement of 35% over the corresponding baseline configuration for intermediate crossflow scheme and was found to be the most optimum configuration.


Author(s):  
Srivatsan Madhavan ◽  
Vivek Subramaniam Sambamurthy ◽  
Prashant Singh ◽  
Srinath Ekkad

Abstract Array jet impingement heat transfer onto thin metal foams of different pore densities has been experimentally investigated in the current study. Aluminum foams with high porosity (93%) and different pore densities of 5, 20 and 40 ppi are subjected to array jet impingement under an intermediate crossflow exit scheme. The jets are arranged such that the streamwise jet-to-jet spacing is x/dj = 8 and spanwise jet-to-jet spacing is y/dj = 4. Jet to target plate spacing was maintained at z/dj = 6 where ‘z’ is the distance between the jet plate and the target surface on which metal foams were installed. A steady state heat transfer technique has been used to obtain local heat transfer coefficients along the streamwise direction. It is observed that heat transfer enhancement levels increase as pore density increases. An enhancement of 50–100% over the baseline case of impingement onto smooth surface is obtained over the flow range tested (3000 < Redj < 12000). At a constant pumping power of 40 W, an enhancement of 26–33% is obtained for the different pore densities tested.


1987 ◽  
Vol 109 (1) ◽  
pp. 120-124 ◽  
Author(s):  
R. L. Alpert

Fires of hazardous scale generate turbulent plumes within which convective heat transfer to surfaces can be important. Relatively little work has been done on developing reliable convective heat transfer correlations applicable to such large-scale flows. The present study, confined to heat transfer rates within the plume impingement region on a ceiling, achieves plume Reynolds numbers an order of magnitude beyond those of previous work by performing laboratory-scale experiments at elevated ambient pressures. Flow disturbances which normally cause scatter in plume heat transfer data are reduced as a consequence of this technique. It is shown that impingement zone Nusselt number depends on the 0.61 power of plume Reynolds numbers in the range of 104 to 105. This result is between the 1/2 power dependence expected for strain rate control (forced jet impingement) and the 2/3 power expected for buoyancy control of turbulent heat transfer rates.


Author(s):  
Srivatsan Madhavan ◽  
Prashant Singh ◽  
Srinath V. Ekkad

High porosity metal foams are known for providing high heat transfer rates, as they provide significant increase in wetted surface area as well as highly tortuous flow paths to coolant flowing over fibers. Further, jet impingement is also known to offer high convective cooling, particularly on the footprints of the jets on the target to be cooled. Jet impingement, however, leads to large special gradients in heat transfer coefficient, leading to increased thermal stresses. In this study, we have tried to use high porosity thin metal foams subjected to array jet impingement, for a special crossflow scheme. One aim of using metal foams is to achieve cooling uniformity also, which is tough to achieve for impingement cooling. High porosity (92.65%) and high pore density (40 pores per inch, 3 mm thick) foams have been used as heat transfer enhancement agents. In order to reduce the pumping power requirements imposed by full metal foam design, we developed two striped metal foam configurations. For that, the jets were arranged in 3 × 6 array (x/d = 3.42, y/d = 2), such that the crossflow is dominantly sideways. This crossflow scheme allowed usage of thin stripes, where in one configuration we studied direct impingement onto stripes of metal foam and in the other, we studied impingement onto metal and crossflow interacted with metal foams. Steady state heat transfer experiments have been conducted for a jet plate configuration with varying jet-to-target plate distance z/d = 0.75, 2 and 4. The baseline case was jet impingement onto a smooth target surface. Jet diameter-based Reynolds number was varied between 3000 to 11000. Enhancement in heat transfer due to impingement onto thin metal foams has been evaluated against the enhancement in pumping power requirements. For a specific case of z/d = 0.75 with the base surface fully covered with metal foam, metal foams have enhanced heat transfer by 2.42 times for a concomitant pressure drop penalty of 1.67 times over the flow range tested.


Author(s):  
Mehrdad Taheri ◽  
Sanjeev Chandra ◽  
Javad Mostaghimi

In this paper, a comprehensive analytical and numerical study of conductive and convective heat transfer through high porosity metal foams is presented. In the first part a novel theoretical model for determination of effective thermal conductivity of metal foams is introduced. This general analysis can be applied to any complex array of interconnected foam cells. Assuming dodecahedron unit cell for modeling the structure of metal foams, an approximate equation for evaluation of effective thermal conductivity of foam with a known porosity is obtained. In this approximation method, unlike the previous two-dimensional (2D) models, porosity is the only geometric input parameter used for evaluation of effective thermal conductivity, while its predictions of effective thermal conductivity are in excellent agreement with the previous models. In the second part a 3D numerical model for conduction in metal foam is constructed. The foam has a square cross section and is exposed to constant temperature at both ends and constant heat flux from the sides. We assume local thermal equilibrium (LTE), i.e., the solid and fluid temperatures are to be locally equal. Comparison of the 3D numerical results to the experiments shows very good agreement. The last part of the study is concerned with the 3D numerical modeling of convective heat transfer through metal foams. Experimentally determined values of permeability and Forchheimer coefficient for 10 pores per inch (PPI) nickel foam are applied to the Brinkman-Forchheimer equation to calculate fluid flow through the foam. Local thermal equilibrium (LTE) and local thermal non-equilibrium (LTNE) methods were both employed for heat transfer simulations. While LTE method resulted in faster calculations and also did not need surface area to volume ratio (αsf) and internal convective coefficient (hsf) as its input, it was not accurate for high temperatures. LTNE should be used to obtain distinct local solid and fluid temperatures.


1974 ◽  
Author(s):  
S. Koncar-Djurdjevic ◽  
M. Mitrovic ◽  
S. Cvijovic ◽  
G. Popovic ◽  
Dimitrije Voronjec

Sign in / Sign up

Export Citation Format

Share Document