Energetic and Economic Potential for Load Control for Residential Customers in Austin, TX

2020 ◽  
Author(s):  
Arkasama Bandyopadhyay ◽  
Julia P. Conger ◽  
Emily A. Beagle ◽  
Michael E. Webber ◽  
Benjamin D. Leibowicz

Abstract This study uses a linear optimization framework to evaluate the effect of different demand response (DR)/load control mechanisms on reduction in peak load and energy consumption from the electricity grid in a home with four major controllable appliances — HVAC (heating, ventilation, and air-conditioning) systems, electric water heaters (EWHs), electric vehicles (EVs), and pool pumps (PPs). Two incentive-based DR methods and four price-based DR schemes — real time pricing (RTP), time-of-use (TOU) rates, critical peak prices (CPP), and variable peak prices (VPP) — are analyzed. Load reduction potential is evaluated for scenarios where the home has both onsite solar and storage, only solar, and no solar or storage. Results show that, from the utility’s perspective, the optimal load control schemes, which result in greatest reduction in peak load and energy consumption from the grid during peak hours, are CPP and VPP (critical price option). By considering the combined effect of demand response, solar generation, and energy storage systems, this study aims to equip electric utilities with the ability to make decisions about dynamic rate design and direct load control to curtail peak demand and shift energy usage.

2021 ◽  
Author(s):  
◽  
Hatem I. Alzaanin

<p>The substantial penetration of wind power introduces increased flexibility requirements on the power system and puts increased pressure on the instantaneous reserve levels required. Instantaneous reserves are a security product that ensures that electricity demand can continue to be met in the event of unplanned generation or transmission interruptions. This reserve must be available to respond very quickly to generation-demand variability. While this is an integral component of the power system, providing instantaneous reserve increases the production cost of power. More calls from energy researchers and stakeholders ask for loads to play an increasingly important role in balancing the short timescale fluctuations in generated wind power. The purpose of this study is to assess the current level of demand responsiveness among domestic refrigerators, freezers, and water heaters and their potential to contribute towards instantaneous reserve and balance the fluctuation of wind. Refrigerators, freezers, and water heaters can generally store energy due to their thermal mass. Interrupting these domestic loads for short time by employing direct load control strategies makes it possible to control these appliances by turning them on or off before their reach their maximum or minimum temperatures or by slightly modifying their temperature set point. Using this strategy helps to ensure that the overall satisfaction of consumers should not be affected. This study first modelled the load profiles of the participated residential appliances and statistically assessed the potential of controlling these residential loads using direct load control strategies to contribute towards instantaneous reserves to mitigate and balance the fluctuation of wind power in the years: 2014, 2020 and 2030. In the second section, it demonstrated the capabilities of the assessed residential responsive loads within Wellington Region network to compensate for and balance the fluctuation of wind power generated from the West Wind Farm in seven selected days in 2013-2014 as a showcase. Such technology can enable a power system operator to remove the burden of both providing instantaneous reserve from conventional sources, and instead maintain such capacity from available residential demand response. The study ends with recommendations to engage residential loads in fast timescale demand response and suggests directions for future research.</p>


2021 ◽  
Author(s):  
◽  
Hatem I. Alzaanin

<p>The substantial penetration of wind power introduces increased flexibility requirements on the power system and puts increased pressure on the instantaneous reserve levels required. Instantaneous reserves are a security product that ensures that electricity demand can continue to be met in the event of unplanned generation or transmission interruptions. This reserve must be available to respond very quickly to generation-demand variability. While this is an integral component of the power system, providing instantaneous reserve increases the production cost of power. More calls from energy researchers and stakeholders ask for loads to play an increasingly important role in balancing the short timescale fluctuations in generated wind power. The purpose of this study is to assess the current level of demand responsiveness among domestic refrigerators, freezers, and water heaters and their potential to contribute towards instantaneous reserve and balance the fluctuation of wind. Refrigerators, freezers, and water heaters can generally store energy due to their thermal mass. Interrupting these domestic loads for short time by employing direct load control strategies makes it possible to control these appliances by turning them on or off before their reach their maximum or minimum temperatures or by slightly modifying their temperature set point. Using this strategy helps to ensure that the overall satisfaction of consumers should not be affected. This study first modelled the load profiles of the participated residential appliances and statistically assessed the potential of controlling these residential loads using direct load control strategies to contribute towards instantaneous reserves to mitigate and balance the fluctuation of wind power in the years: 2014, 2020 and 2030. In the second section, it demonstrated the capabilities of the assessed residential responsive loads within Wellington Region network to compensate for and balance the fluctuation of wind power generated from the West Wind Farm in seven selected days in 2013-2014 as a showcase. Such technology can enable a power system operator to remove the burden of both providing instantaneous reserve from conventional sources, and instead maintain such capacity from available residential demand response. The study ends with recommendations to engage residential loads in fast timescale demand response and suggests directions for future research.</p>


2013 ◽  
Vol 448-453 ◽  
pp. 2769-2774 ◽  
Author(s):  
Chun Hua Yan ◽  
Xiang Ping Lai ◽  
Mi Fang Yan ◽  
Mao Hua Shan

This paper describes the concept and classification of demand response as well as the application status of demand response at home and abroad, designs the overall technical architecture of demand response system, and takes direct load control as an example, then design the entire business process, the internal and external information flow of direct load control based Demand Response system. The research results of this paper will provide China useful references for the future development of demand response management system with independent intellectual property rights.


2021 ◽  
Vol 257 ◽  
pp. 01058
Author(s):  
Haiyu Huang ◽  
Chunming Wang ◽  
Shaolian Xia ◽  
Huaqiang Xiong ◽  
Baofeng Jiang ◽  
...  

As an important part of energy Internet carrier, demand side resources can participate in many interactions with power grid. In order to reduce the peak to valley load difference of power grid, from the perspective of tapping the combined peak shaving potential of air conditioning load and electric vehicles, guided by TOU price and direct load control, this paper proposes an optimal scheduling model with the minimum load difference and the maximum total revenue of users as the objective function. The results show that the joint optimal scheduling strategy can reduce the peak load and eliminate the “secondary peak load” caused by disorderly charging of electric vehicles.


Sign in / Sign up

Export Citation Format

Share Document