direct load control
Recently Published Documents


TOTAL DOCUMENTS

225
(FIVE YEARS 42)

H-INDEX

28
(FIVE YEARS 2)

2021 ◽  
Author(s):  
◽  
Hatem I. Alzaanin

<p>The substantial penetration of wind power introduces increased flexibility requirements on the power system and puts increased pressure on the instantaneous reserve levels required. Instantaneous reserves are a security product that ensures that electricity demand can continue to be met in the event of unplanned generation or transmission interruptions. This reserve must be available to respond very quickly to generation-demand variability. While this is an integral component of the power system, providing instantaneous reserve increases the production cost of power. More calls from energy researchers and stakeholders ask for loads to play an increasingly important role in balancing the short timescale fluctuations in generated wind power. The purpose of this study is to assess the current level of demand responsiveness among domestic refrigerators, freezers, and water heaters and their potential to contribute towards instantaneous reserve and balance the fluctuation of wind. Refrigerators, freezers, and water heaters can generally store energy due to their thermal mass. Interrupting these domestic loads for short time by employing direct load control strategies makes it possible to control these appliances by turning them on or off before their reach their maximum or minimum temperatures or by slightly modifying their temperature set point. Using this strategy helps to ensure that the overall satisfaction of consumers should not be affected. This study first modelled the load profiles of the participated residential appliances and statistically assessed the potential of controlling these residential loads using direct load control strategies to contribute towards instantaneous reserves to mitigate and balance the fluctuation of wind power in the years: 2014, 2020 and 2030. In the second section, it demonstrated the capabilities of the assessed residential responsive loads within Wellington Region network to compensate for and balance the fluctuation of wind power generated from the West Wind Farm in seven selected days in 2013-2014 as a showcase. Such technology can enable a power system operator to remove the burden of both providing instantaneous reserve from conventional sources, and instead maintain such capacity from available residential demand response. The study ends with recommendations to engage residential loads in fast timescale demand response and suggests directions for future research.</p>


2021 ◽  
Author(s):  
◽  
Hatem I. Alzaanin

<p>The substantial penetration of wind power introduces increased flexibility requirements on the power system and puts increased pressure on the instantaneous reserve levels required. Instantaneous reserves are a security product that ensures that electricity demand can continue to be met in the event of unplanned generation or transmission interruptions. This reserve must be available to respond very quickly to generation-demand variability. While this is an integral component of the power system, providing instantaneous reserve increases the production cost of power. More calls from energy researchers and stakeholders ask for loads to play an increasingly important role in balancing the short timescale fluctuations in generated wind power. The purpose of this study is to assess the current level of demand responsiveness among domestic refrigerators, freezers, and water heaters and their potential to contribute towards instantaneous reserve and balance the fluctuation of wind. Refrigerators, freezers, and water heaters can generally store energy due to their thermal mass. Interrupting these domestic loads for short time by employing direct load control strategies makes it possible to control these appliances by turning them on or off before their reach their maximum or minimum temperatures or by slightly modifying their temperature set point. Using this strategy helps to ensure that the overall satisfaction of consumers should not be affected. This study first modelled the load profiles of the participated residential appliances and statistically assessed the potential of controlling these residential loads using direct load control strategies to contribute towards instantaneous reserves to mitigate and balance the fluctuation of wind power in the years: 2014, 2020 and 2030. In the second section, it demonstrated the capabilities of the assessed residential responsive loads within Wellington Region network to compensate for and balance the fluctuation of wind power generated from the West Wind Farm in seven selected days in 2013-2014 as a showcase. Such technology can enable a power system operator to remove the burden of both providing instantaneous reserve from conventional sources, and instead maintain such capacity from available residential demand response. The study ends with recommendations to engage residential loads in fast timescale demand response and suggests directions for future research.</p>


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7599
Author(s):  
Homeyra Akter ◽  
Harun Or Rashid Howlader ◽  
Ahmed Y. Saber ◽  
Paras Mandal ◽  
Hiroshi Takahashi ◽  
...  

Optimal sizing of the power system can drastically reduce the total cost, which is challenging due to the fluctuation in output power of RE (primarily wind and solar) and pollution from thermal generators. The main purpose of this study is to cope with this output power uncertainty of renewables by considering ADLC, residential PV, and BESS at the lowest cost and with the least amount of carbon emission, while putting less burden on consumers by minimizing the IL. This paper optimizes the cost and carbon emission function of a hybrid energy system comprising PV, WG, BESS, and DG at Aguni Island, Japan, using a multi-objective optimization model. To solve the proposed problem in the presence of ADLC, the ϵ-constraint method and MILP are utilized. After obtaining all possible solutions, the FSM selects the best possible solution among all solutions. The result shows that while case 1 has a lower energy cost than the other cases, the quantity of IL is quite significant, putting customers in a burden. In case 2 and case 3, the total energy cost is 11.23% and 10% higher than case 1, respectively, but the sum of the IL is 99% and 95.96% lower than case 1 as the ADLC is applied only for the consumers who have residential PV and BESS, which can reflect the importance of residential PV and BESS. The total cost of case 3 is 1.72% lower than case 2, but IL is higher because sometimes home PV power will be used to charge the home BESS.


2021 ◽  
Author(s):  
Madina Konyrova ◽  
Saule Kumyzbaeva ◽  
Elvira Kadylbekkyzy ◽  
Vyacheslav Stoyak

Author(s):  
Seyed Amir Mansouri ◽  
Emad Nematbakhsh ◽  
Mohammad Sadegh Javadi ◽  
Ahmad Rezaee Jordehi ◽  
Miadreza Shafie-khah ◽  
...  

2021 ◽  
Author(s):  
Homeyra Akter ◽  
Harun Or Rashid Howlader ◽  
Ahmed Y. Saber ◽  
Ashraf M. Hemeida ◽  
Hiroshi Takahashi ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2795
Author(s):  
Nikolaos Iliopoulos ◽  
Motoharu Onuki ◽  
Miguel Esteban

Residential demand response empowers the role of electricity consumers by allowing them to change their patterns of consumption, which can help balance the energy grid. Although such type of management is envisaged to play an increasingly important role in the integration of renewables into the grid, the factors that influence household engagement in these initiatives have not been fully explored in Japan. This study examines the influence of interpersonal, intrapersonal, and socio-demographic characteristics of households in Yokohama on their willingness to participate in demand response programs. Time of use, real time pricing, critical peak pricing, and direct load control were considered as potential candidates for adoption. In addition, the authors explored the willingness of households to receive non-electricity related information in their in-home displays and participate in a philanthropy-based peer-to-peer energy platform. Primary data were collected though a questionnaire survey and supplemented by key informant interviews. The findings indicate that household income, ownership of electric vehicles, socio-environmental awareness, perceived sense of comfort, control, and complexity, as well as philanthropic inclinations, all constitute drivers that influence demand flexibility. Finally, policy recommendations that could potentially help introduce residential demand response programs to a wider section of the public are also proposed.


Sign in / Sign up

Export Citation Format

Share Document