The Remaining Strength of Corroded Casing With Combined Hoop and Longitudinal Stress

Author(s):  
Robert B. Francini ◽  
Jacob D. Wahl ◽  
Nolan T. Quade

The casings in a gas storage or production well can have large longitudinal loads in addition to the hoop stress resulting from internal pressure. Under certain circumstances these loads need to be taken into account when evaluating the remaining strength of corroded areas. The most commonly used method for corrosion evaluation is based on B31G which does not include longitudinal loads. This paper outlines the range of longitudinal loading where the B31G approach is valid. In addition, it presents a method to evaluate the remaining strength of the corroded area where the B31G approach is not valid. The procedure has been validated by burst tests of casing with real and machined metal loss under axial loading.

Author(s):  
Dmitry A. Neganov ◽  
◽  
Victor M. Varshitsky ◽  
Andrey A. Belkin ◽  
◽  
...  

The article contains the comparative results of the experimental and calculated research of the strength of a pipeline with such defects as “metal loss” and “dent with groove”. Two coils with diameter of 820 mm and the thickness of 9 mm of 19G steel were used for full-scale pipe sample production. One of the coils was intentionally damaged by machining, which resulted in “metal loss” defect, the other one was dented (by press machine) and got groove mark (by chisel). The testing of pipe samples was performed by applying static internal pressure to the moment of collapse. The calculation of deterioration pressure was carried out with the use of national and foreign methodical approaches. The calculated values of collapsing pressure for the pipe with loss of metal mainly coincided with the calculation experiment results based on Russian method and ASME B31G. In case of pipe with dent and groove the calculated value of collapsing pressure demonstrated greater coincidence with Russian method and to a lesser extent with API 579/ASME FFS-1. In whole, all calculation methods demonstrate sufficient stability of results, which provides reliable operation of pipelines with defects.


Author(s):  
Mario A. Polanco-Loria ◽  
Håvar Ilstad

This work presents a numerical-experimental methodology to study the fatigue behavior of dented pipes under internal pressure. A full-scale experimental program on dented pipes containing gouges were achieved. Two types of defects were studied: metal loss (plain dent) and sharp notch. Both defects acting independently reduce the fatigue life performance but their combination is highly detrimental and must be avoided. We did not find a severity threshold (e.g. dent depth or crack depth) where these defects could coexist. In addition, based on numerical analyses we proposed a new expression for stress concentration factor (SCF) in line with transversal indentation. This information was successfully integrated into a simple fatigue model where the fatigue life predictions were practically inside the window of experimental results.


2001 ◽  
Vol 36 (4) ◽  
pp. 373-390 ◽  
Author(s):  
S. J Hardy ◽  
M. K Pipelzadeh ◽  
A. R Gowhari-Anaraki

This paper discusses the behaviour of hollow tubes with axisymmetric internal projections subjected to combined axial and internal pressure loading. Predictions from an extensive elastic and elastic-plastic finite element analysis are presented for a typical geometry and a range of loading combinations, using a simplified bilinear elastic-perfectly plastic material model. The axial loading case, previously analysed, is extended to cover the additional effect of internal pressure. All the predicted stress and strain data are found to depend on the applied loading conditions. The results are normalized with respect to material properties and can therefore be applied to geometrically similar components made from other materials, which can be represented by the same material models.


1973 ◽  
Vol 95 (4) ◽  
pp. 219-223 ◽  
Author(s):  
D. M. Woo

A numerical solution for analysis of the bulging process of a thin-walled tube under internal pressure and axial force is proposed. The solution is applied to a case in which the longitudinal stress resulted from internal pressure and external compressive load is tensile along the whole length of the bulged tube. To verify whether the solution is applicable, theoretical and experimental results on the bulging of copper tubes have been obtained and are compared in this paper.


Author(s):  
Andrew Cosham ◽  
Robert Andrews

Abstract Annex G Assessment of locally thinned areas (LTAs) in BS 7910:2013 is applicable to LTAs in cylinder, a bend and a sphere or vessel end. It can be used to assess the longitudinally-orientated LTA in a cylinder subject to a hoop stress and a circumferentially-orientated LTA in a cylinder subject to an axial stress (due to axial force, in-plane bending moment and internal pressure), and also to assess an LTA subject to a hoop stress and an axial stress. An outline of the origins of Annex G is given. A comparison with full-scale burst tests of pipes or vessels containing LTAs subject to a hoop stress and an axial stress is presented. It is demonstrated that the method in G.4.3 Hoop stress and axial stress is conservative.


1999 ◽  
Vol 121 (4) ◽  
pp. 237-241 ◽  
Author(s):  
M. Mohareb ◽  
D. W. Murray

An analytical expression is derived for the prediction of fully plastic moment capacity of pipes subjected to axial loading and internal pressure. The expression is based on the von Mises yield criterion. The expression predicts pipe moment capacities that are in good agreement with full-scale experimental results. A universal nondimensional moment versus effective axial force-pressure interaction diagram is developed for the design of elevated pipe lines.


2014 ◽  
Vol 6 ◽  
pp. 537679 ◽  
Author(s):  
Jianjun Liu ◽  
Qiang Xiao

The operation pressure of underground salt-cavern gas storage directly affects its stability. Because of seasonal demand and other emergency reasons, the gas storage working pressures always change from high to low or from low to high cyclic variation. In order to analyze the effect of gas storage pressure changing on its long-term stability, considering the salt rock creep, a 3D finite element model was built using the software Abaqus. Moreover, the deformation and analyzed results of the storage under 0 MPa, 4 MPa, 6 MPa, 8 MPa, 10 MPa, and 12 MPa and also circulating changes pressure operation were given in the 10-year creep. It concluded that how working pressures have effect on long-term stability of salt-cavern gas storage. The research results indicated that the long-term creep performance of underground salt cavern gas storage is affected by internal pressure, the smaller the internal pressure creep is, the more obvious the creep and the greater deformation of gas storage are. The greater the internal pressure is, the smaller the deformation of the gas storage is. The low pressure and excessive high pressure must be avoided during the operation of gas storage. These results have an important significance on determining the reasonable pressure of gas storage operation and ensure the long-term stability of gas storage.


Author(s):  
G. Shen ◽  
W. R. Tyson

A stress-strain equation of Ramberg-Osgood type is proposed to correlate the longitudinal stress with longitudinal strain of a thin plate when a constant stress is applied transversely. The same approach can be used to correlate the axial stress with axial strain for a thin-walled pipe in axial tension with internal pressure. The proposed stress-strain equation relating the longitudinal stress and strain closely approximates that of deformation theory. The effect of a secondary stress (hoop stress) on the J-integral for a circumferential crack in a pipe under axial load and internal pressure is evaluated by finite element analysis (FEA). The results show that the J-integral decreases with internal pressure at a given axial stress but increases with internal pressure at a given axial strain. It is concluded that while a secondary stress may be safely neglected in a stress-based format because it decreases the driving force at a given applied stress, it should not be neglected in a strain-based format because it significantly increases the driving force at a given applied strain.


Author(s):  
Muhammad Abid ◽  
Abdul W. Awan

A number of analytical and experimental studies have been conducted to study ‘strength’ and ‘sealing capability’ of bolted flange joint only under internal pressure loading. Due to the ignorance of the external i.e. axial loading, the optimized performance of the bolted flange joint can not be achieved. A very limited work is found in literature under combined internal pressure and axial loading. In addition, the present design codes do not address the effects of axial loading on the structural integrity and sealing ability of the flange joints. From previous studies, non-gasketed joint is claimed to have better performance as compared to conventional gasketed joint. To investigate non-gasketed joint’s performance i.e. joint strength and sealing capability under combined internal pressure and any applied external loading, an extensive 3D nonlinear finite element analysis is carried out and overall joint performance and behavior is discussed.


Sign in / Sign up

Export Citation Format

Share Document