Advanced Numerical Modeling of Nonlinear Elastic Cable With Permanent Stretch Using Cable Driven Parallel Robot
Since cable driven parallel robots (CDPRs) have many advantages, they have been used in many industrial fields. Fully constrained CDPRs mainly use Dyneema polyethylene because it has advantage of the lower weight than steel wire. However, the polyethylene cable has complex elastic characteristics (e.g. permanent stretch and hysteresis). In this paper, the advanced numerical modeling of nonlinear elastic cable with permanent stretch using cable driven parallel robot was derived and simulated for various cable condition. Based on the advanced numerical nonlinear cable model, the simulation was carried out under the various cable lengths and tensions. Compared to the experimental results, the simulation results are good agreement with the experimental data.