Advanced Numerical Modeling of Nonlinear Elastic Cable With Permanent Stretch Using Cable Driven Parallel Robot

Author(s):  
Sung-Hyun Choi ◽  
Kyoung-Su Park

Since cable driven parallel robots (CDPRs) have many advantages, they have been used in many industrial fields. Fully constrained CDPRs mainly use Dyneema polyethylene because it has advantage of the lower weight than steel wire. However, the polyethylene cable has complex elastic characteristics (e.g. permanent stretch and hysteresis). In this paper, the advanced numerical modeling of nonlinear elastic cable with permanent stretch using cable driven parallel robot was derived and simulated for various cable condition. Based on the advanced numerical nonlinear cable model, the simulation was carried out under the various cable lengths and tensions. Compared to the experimental results, the simulation results are good agreement with the experimental data.

Author(s):  
Sung-Hyun Choi ◽  
Kyoung-Su Park

Cable driven parallel robots (CDPRs) have many advantages such as low inertia and large workspace. These advantages lead to the industrial applications. CDPRs mainly use Dyneema polymer cable for more high sensitivity because it has advantage of the lower weight than steel wire. However, the polymer cable is continuously deformed when actuating the CDPR because of the elasto-plastic cable characteristics such as recovery. In this paper, numerical cable recovery was proposed using the modified burger model. Finally, the models were simulated and compared with the experimental profiles. As the result, the simulations are good agreement with the experimental profiles.


2013 ◽  
Vol 397-400 ◽  
pp. 1552-1557 ◽  
Author(s):  
Xiao Zheng Dang ◽  
Liang Sheng Zhou ◽  
Ling Ping Liao ◽  
Dong Liang

Parallel robots are widely used in the machinery industry. In this paper, a planar 3-RRR parallel robot is researched. The forward kinematics mathematical model is established for this kind of mechanism. On the basis of it, a relevant simulation is carried out through MATLAB/Simulink. Thus, the motion rules and stress state for all parts of the mechanism are described vividly The simulation results show that this method is much more effective and efficient when the simulation is implemented for a certain machine system. Meanwhile, it provides a theoretical foundation and a better analytical approach of simulation for the design and analysis of complex multi-linkage mechanisms in the future.


Author(s):  
Shaoping Bai ◽  
Lasse Køgs Andersen ◽  
Carsten Rebbe Mølgaard

This work deals with the design of parallel robots for the generation of pick-and-place operation, or Schönflies motion. The aim is to develop a robot with workspace optimized for fast pick-and-place operations, namely, a robot with a superellipsoidal reachable volume, which suits best for the pick-and-place operations on conveyers, where robots’ working areas are nearly rectangular. In this paper, the kinematics and stiffness modeling of the new robot are presented. A method of stiffness modeling by means of Castigliano’s Theorem is developed. Using the new method, the stiffness of the robot is analyzed. The results are compared with FEA simulation, which shows a good agreement between the results. The method is finally applied to the engineering design of the new robot for enhanced static and dynamic performance.


Author(s):  
Sung-Hyun Choi ◽  
Kyoung-Su Park ◽  
Jun-Mu Heo ◽  
Hue Ha

Cable driven parallel robots (CDPRs) have been widely used in precision Industries. However, an error occurs in repetitive motion of the CDPR because of the elongation and recovery of cable. Also, it is difficult to apply the numerical cable model because of its complexity. In this paper, we use the frequency based H-RNN method for accurate kinematics. H-RNN predicted more accurately compared with LSTM and RNN algorithms.


2006 ◽  
Vol 4 ◽  
pp. 224-236
Author(s):  
A.S. Topolnikov

The paper is devoted to numerical modeling of Navier–Stokes equations for incompressible media in the case, when there exist gas and liquid inside the rectangular calculation region, which are separated by interphase boundary. The set of equations for incompressible liquid accounting for viscous, gravitational and surface (capillary) forces is solved by finite-difference scheme on the spaced grid, for description of interphase boundary the ideology of Level Set Method is used. By developed numerical code the set of hydrodynamic problems is solved, which describe the motion of two-phase incompressible media with interphase boundary. As a result of numerical simulation the solutions are obtained, which are in good agreement with existing analytical and experimental solutions.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Xichuan Liu ◽  
Taichang Gao ◽  
Yuntao Hu ◽  
Xiaojian Shu

In order to improve the measurement of precipitation microphysical characteristics sensor (PMCS), the sampling process of raindrops by PMCS based on a particle-by-particle Monte-Carlo model was simulated to discuss the effect of different bin sizes on DSD measurement, and the optimum sampling bin sizes for PMCS were proposed based on the simulation results. The simulation results of five sampling schemes of bin sizes in four rain-rate categories show that the raw capture DSD has a significant fluctuation variation influenced by the capture probability, whereas the appropriate sampling bin size and width can reduce the impact of variation of raindrop number on DSD shape. A field measurement of a PMCS, an OTT PARSIVEL disdrometer, and a tipping bucket rain Gauge shows that the rain-rate and rainfall accumulations have good consistencies between PMCS, OTT, and Gauge; the DSD obtained by PMCS and OTT has a good agreement; the probability of N0, μ, and Λ shows that there is a good agreement between the Gamma parameters of PMCS and OTT; the fitted μ-Λ and Z-R relationship measured by PMCS is close to that measured by OTT, which validates the performance of PMCS on rain-rate, rainfall accumulation, and DSD related parameters.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 735
Author(s):  
Songchen Wang ◽  
Xianchen Yang ◽  
Xinmei Li ◽  
Cheng Chai ◽  
Gen Wang ◽  
...  

The objective of this study was to investigate the wear characteristics of the U-shaped rings of power connection fittings, and to construct a wear failure prediction model of U-shaped rings in strong wind environments. First, the wear evolution and failure mechanism of U-shaped rings with different wear loads were studied by using a swinging wear tester. Then, based on the Archard wear model, the U-shaped ring wear was dynamically simulated in ABAQUS, via the Umeshmotion subroutine. The results indicated that the wear load has an important effect on the wear of the U-shaped ring. As the wear load increases, the surface hardness decreases, while plastic deformation layers increase. Furthermore, the wear mechanism transforms from adhesive wear, slight abrasive wear, and slight oxidation wear, to serious adhesive wear, abrasive wear, and oxidation wear with the increase of wear load. As plastic flow progresses, the dislocation density in ferrite increases, leading to dislocation plugs and cementite fractures. The simulation results of wear depth were in good agreement with the test value of, with an error of 1.56%.


2015 ◽  
Vol 645-646 ◽  
pp. 70-74 ◽  
Author(s):  
Min Zhong ◽  
Yu Hang Zhao ◽  
Shou Mian Chen ◽  
Ming Li ◽  
Shao Hai Zeng ◽  
...  

An embedded SiGe layer was applied in the source/drain areas (S/D) of a field-effect transistor to boost the performance in the p channels. Raised SiGe S/D plays a critical role in strain engineering. In this study, the relationship between the SiGe overfilling and the enhancement of channel stress was investigated. Systematic technology computer aided design (TCAD) simulations of the SiGe overfill height in a 40 nm PMOS were performed. The simulation results indicate that a moderate SiGe overfilling induces the highest stress in the channel. Corresponding epitaxial growth experiments were done and the obtained experimental data was in good agreement with the simulation results. The effect of the SiGe overfilling is briefly discussed. The results and conclusions presented within this paper might serve as useful references for the optimization of the embedded SiGe stressor for 40 nm logic technology node and beyond.


2011 ◽  
Vol 189-193 ◽  
pp. 2535-2538 ◽  
Author(s):  
Hong Yan ◽  
Wen Xian Huang

The thixo-forging of magnesium matrix composite was analyzed with computer numerical simulation based on rigid viscoplastic finite element method. The constitutive model of SiCp/AZ61 composite was established in our prior literature. Behavior of metal flow and temperature field were obtained. The differences between traditional forging and thixo-forging processes were analyzed. Results indicated that thixo-forging was better in filling cavity than forging. Simulation results were good agreement with experimental ones.


2003 ◽  
Vol 76 (1) ◽  
pp. 271-285 ◽  
Author(s):  
Li-Rong Wang ◽  
Zhen-Hua Lu

Abstract This paper is to present a method and procedure for modeling the constitutive law of anti-vibration rubber hyperelasticity based on finite element simulations. The hyperelasticity of rubber-like material is briefly summarized first. Then a method and procedure for determining an accurate constitutive law of rubber hyperelasticity from uniaxial tension and compression experiment data is presented and implemented. Due to nonlinear elastic properties of rubber and application limitations of various forms of constitutive law, results of finite element simulation to rubber material experiments show that different forms of constitutive law have to be adopted in different ranges of strain. The proposed procedure to obtain an appropriate constitutive law of rubber hyperelasticity of vibration isolator provides engineers with an effective modeling technique for design and analysis of anti-vibration rubber components. Finally, models of three kinds of rubber materials of a hydraulically damped rubber mount (HDM) are determined by tests and finite element simulations and applied to static and dynamic characteristic analysis of the HDM. The predicted elastic characteristics of the HDM and its major rubber components agree well with experimental data, which demonstrates the practicability and effectiveness of the presented modeling technique to modeling engineering rubber materials in dynamic systems.


Sign in / Sign up

Export Citation Format

Share Document