Molecular Dynamics Simulation of Vapor Condensation on Nanotubes

Author(s):  
Donguk Suh ◽  
Kenji Yasuoka ◽  
Xiao Cheng Zeng

Vapor condensation on silicon nanotubes has been simulated by classical molecular dynamics to understand how the nucleation and condensation process for pores is affected. Two different nanotube aspect ratios were examined to see if there are growth rate changes. The rate for the two different types of nanotubes did not show significant variation meaning that the aspect ratio is an insignificant factor to enhance condensation. This result is consistent with previous nanorod studies. The supersaturated vapor gathered both inside and outside of the tube. Unlike the growth rate, however, the occurrence of homogeneous nucleation was hindered contrary to other basic geometries in previous studies.

2018 ◽  
Vol 8 (10) ◽  
pp. 1714 ◽  
Author(s):  
Qingfei Fu ◽  
Yunxiao Zhang ◽  
Chaojie Mo ◽  
Lijun Yang

This paper investigates the characteristics of a nitrogen jet (the thermodynamic conditions ranging from subcritical to supercritical) ejected into a supercritical nitrogen environment using the molecular dynamics (MD) simulation method. The thermodynamic properties of nitrogen obtained by molecular dynamics show good agreement with the Soave-Redlich-Kwong (SRK) equation of state (EOS). The agreement provides validation for this nitrogen molecular model. The molecular dynamics simulation of homogeneous nitrogen spray is carried out in different thermodynamic conditions from subcritical to supercritical, and a spatio-temporal evolution of the nitrogen spray is obtained. The interface of the nitrogen spray is determined at the point where the concentration of ejected fluid component reaches 50%, since the supercritical jet has no obvious vapor-liquid interface. A stability analysis of the transcritical jets shows that the disturbance growth rate of the shear layer coincides very well with the classical theoretical result at subcritical region. In the supercritical region, however, the growth rate obtained by molecular dynamics deviates from the theoretical result.


CrystEngComm ◽  
2018 ◽  
Vol 20 (25) ◽  
pp. 3569-3580 ◽  
Author(s):  
Xiaoxiao Sui ◽  
Yongjian Cheng ◽  
Naigen Zhou ◽  
Binbing Tang ◽  
Lang Zhou

Based on the Stillinger–Weber potential, molecular dynamics simulations of the solidification processes of multicrystalline silicon were carried out.


CrystEngComm ◽  
2019 ◽  
Vol 21 (48) ◽  
pp. 7507-7518 ◽  
Author(s):  
Soroush Ahmadi ◽  
Yuanyi Wu ◽  
Sohrab Rohani

Molecular dynamics (MD) simulation is used to investigate the mechanism of crystal nucleation of potassium chloride (KCl) in a supersaturated aqueous solution at 293 K and 1 atm.


Nanomaterials ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 894 ◽  
Author(s):  
Azam Salmankhani ◽  
Zohre Karami ◽  
Amin Hamed Mashhadzadeh ◽  
Mohammad Reza Saeb ◽  
Vanessa Fierro ◽  
...  

Although the properties of carbon nanotubes (CNTs) are very well-known and are still extensively studied, a thorough understanding of other carbon-based nanomaterials such as C3N nanotubes (C3NNTs) is still missing. In this article, we used molecular dynamics simulation to investigate the effects of parameters such as chirality, diameter, number of walls, and temperature on the mechanical properties of C3N nanotubes, C3N nanobuds, and C3NNTs with various kinds of defects. We also modeled and tested the corresponding CNTs to validate the results and understand how replacing one C atom of CNT by one N atom affects the properties. Our results demonstrate that the Young’s modulus of single-walled C3NNTs (SWC3NNTs) increased with diameter, irrespective of the chirality, and was higher in armchair SWC3NNTs than in zigzag ones, unlike double-walled C3NNTs. Besides, adding a second and then a third wall to SWC3NNTs significantly improved their properties. In contrast, the properties of C3N nanobuds produced by attaching an increasing number of C60 fullerenes gradually decreased. Moreover, considering C3NNTs with different types of defects revealed that two-atom vacancies resulted in the greatest reduction of all the properties studied, while Stone–Wales defects had the lowest effect on them.


Sign in / Sign up

Export Citation Format

Share Document