Numerical Simulation on Nanoparticles Integrated Laser Shock Peening of Aluminum Alloy

Author(s):  
Chang Ye ◽  
Gary J. Cheng

In this paper, numerical simulation of nanoparticle integrated laser shock peening of aluminum alloys was carried out. A “tied constraint” was used to connect the matrix and nanoparticle assembly in ABAQUS package. Different particle size and particle volumes fraction (PVF) were studied. It was found that there is significant stress concentration around the nanoparticles. The existence of nanoparticle will influence the stress wave propagation and thus the final stress and strain state of the material after LSP. In addition, particle size, PVF and particle orientation all influence the strain rate, static residual stress, static plastic strain and energy absorption during the LSP process.

2014 ◽  
Vol 34 (4) ◽  
pp. 0414003
Author(s):  
罗密 Luo Mi ◽  
罗开玉 Luo Kaiyu ◽  
王庆伟 Wang Qingwei ◽  
鲁金忠 Lu Jinzhong

2012 ◽  
Vol 9 (9) ◽  
pp. 1399-1403 ◽  
Author(s):  
Wei Zhu ◽  
Jianzhong Zhou ◽  
Min Wang ◽  
Shu Huang ◽  
Yujie Fan ◽  
...  

Author(s):  
Chang Ye ◽  
Gary J. Cheng

Nanocomposite and multiphase structures have become more important nowadays to enhance the mechanical properties of materials. Laser shock peening (LSP) is one of the most efficient ways to increase component fatigue life. In this paper, numerical and experimental studies have been carried out to study the effects of nanoparticles integrated structures during the laser shock peening of aluminum alloys. The LSP experiment of aluminum samples with different particle densities was carried out. The effect of nanoparticle on shock wave propagation, plastic deformation, energy absorption, and residual stress magnitude was studied. A qualitative agreement is found between experiment and simulation. The existence of nanoparticles affects the stress wave propagation and increases the ratio of absorbed energy to total energy and thus the magnitude of residual stress of the material after LSP.


2014 ◽  
Vol 936 ◽  
pp. 1653-1656
Author(s):  
Lei Chen

Laser shock peening (LSP) is a novel technology of surface treatment. LSP utilizes a short laser pulse with high energy density, which induced a high pressure stress wave propagation and residual compressive stress on material surface. The effects of LSP of SAE9310 steel with a laser pulse of 14.2J at 2.9mm square beam have been studied by finite element method. The underlying formulation is based on Lagangian elastoplastic materials model. The propagation of shock wave, residual stress and plastic strain are simulated. The simulations show that the residual stress is mainly in the radial direction of the workpiece, and nearly zero in the longitudinal direction. The plastic strain remains on the processed surface dominantly. Divergences between theoretical and experimental residual stress occur due to the simplification of shock peening conditions.


Author(s):  
Emricka Julan ◽  
Said Taheri ◽  
Claude Stolz ◽  
Patrice Peyre ◽  
Philippe Gilles

Laser shock peening (LSP) is a surface mitigation technique that can be applied to improve the life of a metallic component through the generation of a compressive surface stress field induced by high-power laser pulses. Numerical simulation of LSP (produced residual stresses) in presence of an initial stress field similar to those obtained under welding has been carried out in nonlinear dynamic by coupling an explicit code (Europlexus) and an implicit one (Code_Aster). In the first step, an axisymetrical model has been validated by comparison with an analytical solution considering an elastic-perfectly plastic behavior law. Then, comparisons with Abaqus calculations have been carried out in terms of displacements and residual stresses using the Johnson-Cook high strain rate constitutive law to validate multi-impact 3D modeling. High strain rate parameter of Johnson-Cook law has been identified using LSP on thin plates. Validations of the simulations are then performed by comparing with experimental determined deformations caused by LSP on thick plates. For 25 overlapped shots, LSP induced residual stresses calculated with and without initial residual stresses similar to those obtain under welding have been compared to adress the effect of initial stresses on final residual fields.


2005 ◽  
Author(s):  
Jian Zhong Zhou ◽  
Hui Xia Liu ◽  
Yong Kang Zhang ◽  
Ming Zhou ◽  
Xing Quan Zhang ◽  
...  

2018 ◽  
Vol 335 ◽  
pp. 32-40 ◽  
Author(s):  
Zhaopeng Tong ◽  
Xudong Ren ◽  
Yunpeng Ren ◽  
Fengze Dai ◽  
Yunxia Ye ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document