laser pulse
Recently Published Documents


TOTAL DOCUMENTS

6705
(FIVE YEARS 895)

H-INDEX

102
(FIVE YEARS 9)

2022 ◽  
Vol 139 ◽  
pp. 106350
Author(s):  
Tatyana Kunkel ◽  
Yuri Vorobyov ◽  
Mikhail Smayev ◽  
Petr Lazarenko ◽  
Alexey Romashkin ◽  
...  

Fuel ◽  
2022 ◽  
Vol 315 ◽  
pp. 123190
Author(s):  
Vishal S. Jagadale ◽  
D. Chaitanya Kumar Rao ◽  
Devendra Deshmukh ◽  
Dag Hanstorp ◽  
Yogeshwar Nath Mishra
Keyword(s):  

Author(s):  
Anastasios Grigoriadis ◽  
Georgia Andrianaki ◽  
Ioannis Fitilis ◽  
Vasilis Menelaos Dimitriou ◽  
Eugene Lawrence Clark ◽  
...  

Abstract A relativistic electron source based on high power laser interaction with gas jet targets has been developed at the Institute of Plasma Physics & Lasers of the Hellenic Mediterranean University. Initial measurements were conducted using the “Zeus” 45 TW laser with peak intensities in the range of 1018-1019 W/cm2 interacting with a He pulsed gas jet having a 0.8 mm diameter nozzle. A significant improvement of the electron signal was measured after using an absorber to improve the laser pulse contrast from 10-10 to 10-11. A high stability quasi-monoenergetic electron beam of about 50 MeV was achieved and measured using a magnetic spectrometer for pulsed gas jet backing pressure of 12 bar. Supplementary studies using a 3 mm diameter nozzle for backing pressures in the range of 35 to 40 bar showed electron beam production with energies spread in the range from 50 to 150 MeV. The pulsed jet density profile was determined using interferometric techniques. Particle-in-cell (PIC) simulations, at the above experimentally determined conditions, support our experimental findings.


Author(s):  
Amol Holkundkar ◽  
Felix Mackenroth

Abstract We present a novel approach to analyzing phase-space distributions of electrons ponderomotively scattered off an ultra-intense laser pulse and comment on implications for thus conceivable in-situ laser-characterization schemes. To this end, we present fully relativistic test particle simulations of electrons scattered from an ultra-intense, counter-propagating laser pulse. The simulations unveil non-trivial scalings of the scattered electron distribution with the laser intensity, pulse duration, beam waist, and energy of the electron bunch. We quantify the found scalings by means of an analytical expression for the scattering angle of an electron bunch ponderomotively scattered from a counter-propagating, ultra-intense laser pulse, also accounting for radiation reaction (RR) through the Landau-Lifshitz (LL) model. For various laser and bunch parameters, the derived formula is in excellent quantitative agreement with the simulations. We also demonstrate how in the radiation-dominated regime a simple re-scaling of our model's input parameter yields quantitative agreement with numerical simulations based on the LL model.


2022 ◽  
Author(s):  
Swen Zerebecki ◽  
Kai Schott ◽  
Soma Salamon ◽  
Joachim Landers ◽  
Eko Budiyanto ◽  
...  

Controlling the surface composition of colloidal nanoparticles is still a challenging yet mandatory prerequisite in catalytic studies to investigate composition-activity trends, active sites, and reaction mechanisms without superposition of particle size- or morphology-effects. Laser post-processing of colloidal nanoparticles has been employed previously to create defects in oxide nanoparticles, while the possibility of laser-based cation doping of colloidal nanoparticles without affecting their size, remains mostly unaccounted for. Consequently, at the example of doping iron into colloidal Co3O4 spinel nanoparticles, we developed a pulse-by-pulse laser cation doping method to provide catalyst series with gradual surface composition but maintained extrinsic properties such as phase, size, and surface area for catalytic studies. Laser pulse number-resolved doping series were prepared at laser intensity chosen to selectively heat the Co3O4-NPs to roughly 1000 K and enable cation diffusion of surface-adsorbed Fe3+ into the Co3O4 lattice while maintaining the spinel phase, particle size, and surface area. The combination of bulk-sensitive X-ray fluorescence (XRF) and surface-sensitive X-ray photoelectron spectroscopy (XPS) was used to confirm a surface enrichment of the Fe-dopant. XRD, Magnetometry, and Mössbauer spectroscopy revealed an increasing interaction between Fe and the antiferromagnetic Co3O4 with an increasing number of pulses, in line with a proposed laser-induced surface doping of colloidal Co3O4 with Fe. Using Fick’s second law the thermal diffusion-related doping depth was estimated to be roughly 2 nm after 4 laser pulses. At the example of gas-phase 2-propanol oxidation and liquid-phase oxygen evolution reaction, the activity of the laser-doped catalysts is in good agreement with previous observations on binary iron-cobalt oxides. The catalytic activity was found to linearly increases with the calculated doping depth in both reactions, while only catalysts processed with at least one laser pulse were catalytically stable, highlighting the presented method in providing comparable, active, and stable gradual catalyst doping series for future catalytic studies.


2022 ◽  
Vol 5 (1) ◽  
Author(s):  
Jie Zhao ◽  
Yan-Ting Hu ◽  
Yu Lu ◽  
Hao Zhang ◽  
Li-Xiang Hu ◽  
...  

AbstractGeneration of energetic electron-positron pairs using multi-petawatt (PW) lasers has recently attracted increasing interest. However, some previous laser-driven positron beams have severe limitations in terms of energy spread, beam duration, density, and collimation. Here we propose a scheme for the generation of dense ultra-short quasi-monoenergetic positron bunches by colliding a twisted laser pulse with a Gaussian laser pulse. In this scheme, abundant γ-photons are first generated via nonlinear Compton scattering and positrons are subsequently generated during the head-on collision of γ-photons with the Gaussian laser pulse. Due to the unique structure of the twisted laser pulse, the positrons are confined by the radial electric fields and experience phase-locked-acceleration by the longitudinal electric field. Three-dimensional simulations demonstrate the generation of dense sub-femtosecond quasi-monoenergetic GeV positron bunches with tens of picocoulomb (pC) charge and extremely high brilliance above 1014 s−1 mm−2 mrad−2 eV−1, making them promising for applications in laboratory physics and high energy physics.


2022 ◽  
Vol 5 (1) ◽  
Author(s):  
Hanan Hamamera ◽  
Filipe Souza Mendes Guimarães ◽  
Manuel dos Santos Dias ◽  
Samir Lounis

AbstractThe ultimate control of magnetic states of matter at femtosecond (or even faster) timescales defines one of the most pursued paradigm shifts for future information technology. In this context, ultrafast laser pulses developed into extremely valuable stimuli for the all-optical magnetization reversal in ferrimagnetic and ferromagnetic alloys and multilayers, while this remains elusive in elementary ferromagnets. Here we demonstrate that a single laser pulse with sub-picosecond duration can lead to the reversal of the magnetization of bulk nickel, in tandem with the expected demagnetization. As revealed by realistic time-dependent electronic structure simulations, the central mechanism involves ultrafast light-induced torques that act on the magnetization. They are only effective if the laser pulse is circularly polarized on a plane that contains the initial orientation of the magnetization. We map the laser pulse parameter space enabling the magnetization switching and unveil rich intra-atomic orbital-dependent magnetization dynamics featuring transient inter-orbital non-collinear states. Our findings open further perspectives for the efficient implementation of optically-based spintronic devices.


Metals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 107
Author(s):  
Vasily Pozdnyakov ◽  
Sören Keller ◽  
Nikolai Kashaev ◽  
Benjamin Klusemann ◽  
Jens Oberrath

Laser shock peening (LSP) is a surface modification technique to improve the mechanical properties of metals and alloys, where physical phenomena are difficult to investigate, due to short time scales and extreme physical values. In this regard, simulations can significantly contribute to understand the underlying physics. In this paper, a coupled simulation approach for LSP is presented. A global model of laser–matter–plasma interaction is applied to determine the plasma pressure, which is used as surface loading in finite element (FE) simulations in order to predict residual stress (RS) profiles in the target material. The coupled model is applied to the LSP of AA2198-T3 with water confinement, 3×3mm2 square focus and 20 ns laser pulse duration. This investigation considers the variation in laser pulse energy (3 J and 5 J) and different protective coatings (none, aluminum and steel foil). A sensitivity analysis is conducted to evaluate the impact of parameter inaccuracies of the global model on the resulting RS. Adjustment of the global model to different laser pulse energies and coating materials allows us to compute the temporal pressure distributions to predict RS with FE simulations, which are in good agreement with the measurements.


Sign in / Sign up

Export Citation Format

Share Document