Practical Structural Assessment of Offshore Structures for Wave Slap

Author(s):  
Joong Soo Moon ◽  
Tae Hyun Park ◽  
Woo Seung Sim ◽  
Hyun Soo Shin

By the combination of theoretical and empirical approach, the methodology for practical structural assessment of offshore structures for wave slap is proposed. It is developed for engineers in the sense that the precise design pressure is easily obtainable and quickly applicable in early and detail design stage. For impact load prediction, the Pressure-Impulse theory that was well developed and validated in coastal engineering field is applied. The impact pressures are classified into three types (traditional, sharp, and immersed slap) according to model tests and BP Schiehallion FPSO’s bow monitoring. The time histories of impact pressures for the classified impact types are generated with the pressure impulse predicted by the Pressure-Impulse theory. Nonlinear transient structural analyses are performed using the time series of impact pressures to obtain equivalent static pressure factors. Finally, the design pressure is determined by multiplying the maximum peak pressure by the equivalent static pressure factor. The results are validated through the comparison with model tests and dedicated reports.

2021 ◽  
Vol 11 (9) ◽  
pp. 4136
Author(s):  
Rosario Pecora

Oleo-pneumatic landing gear is a complex mechanical system conceived to efficiently absorb and dissipate an aircraft’s kinetic energy at touchdown, thus reducing the impact load and acceleration transmitted to the airframe. Due to its significant influence on ground loads, this system is generally designed in parallel with the main structural components of the aircraft, such as the fuselage and wings. Robust numerical models for simulating landing gear impact dynamics are essential from the preliminary design stage in order to properly assess aircraft configuration and structural arrangements. Finite element (FE) analysis is a viable solution for supporting the design. However, regarding the oleo-pneumatic struts, FE-based simulation may become unpractical, since detailed models are required to obtain reliable results. Moreover, FE models could not be very versatile for accommodating the many design updates that usually occur at the beginning of the landing gear project or during the layout optimization process. In this work, a numerical method for simulating oleo-pneumatic landing gear drop dynamics is presented. To effectively support both the preliminary and advanced design of landing gear units, the proposed simulation approach rationally balances the level of sophistication of the adopted model with the need for accurate results. Although based on a formulation assuming only four state variables for the description of landing gear dynamics, the approach successfully accounts for all the relevant forces that arise during the drop and their influence on landing gear motion. A set of intercommunicating routines was implemented in MATLAB® environment to integrate the dynamic impact equations, starting from user-defined initial conditions and general parameters related to the geometric and structural configuration of the landing gear. The tool was then used to simulate a drop test of a reference landing gear, and the obtained results were successfully validated against available experimental data.


2021 ◽  
Author(s):  
Daniel de Oliveira Costa ◽  
Julia Araújo Perim ◽  
Bruno Guedes Camargo ◽  
Joel Sena Sales Junior ◽  
Antonio Carlos Fernandes ◽  
...  

Abstract Slamming events due to wave impact on the underside of decks might lead to severe and potentially harmful local and/or global loads in offshore structures. The strong nonlinearities during the impact require a robust method for accessing the loads and hinder the use of analytical models. The use of computation fluid dynamics (CFD) is an interesting alternative to estimate the impact loads, but validation through experimental data is still essential. The present work focuses on a flat-bottomed model fixed over the mean free surface level submitted to regular incoming waves. The proposal is to reproduce previous studies through CFD and model tests in a different reduced scale to provide extra validation and to identify possible non-potential scale effects such as air compressibility. Numerical simulations are performed in both experiments’ scales. The numerical analysis is performed with a marine dedicated flow solver, FINE™/Marine from NUMECA, which features an unsteady Reynolds-averaged Navier-Stokes (URANS) solver and a finite volume method to build spatial discretization. The multiphase flow is represented through the Volume of Fluid (VOF) method for incompressible and nonmiscible fluids. The new model tests were performed at the wave channel of the Laboratory of Waves and Currents (LOC/COPPE – UFRJ), at the Federal University of Rio de Janeiro.


2012 ◽  
Vol 16 (2) ◽  
pp. 75
Author(s):  
Aulia Windyandari

Aulia Windyandari, in paper simulation model of development method for passenger savety evaluation of freefaal lifeboat explain that since the launching procedure of Freefall Lifeboat (FFL) may have an impact with the water surface, the occupant injury is possible be occured in the evacuation process of the offshore structures.  The FFL shock acceleration has been conducted by the impact force when the lifeboat entry the water surface. If the shock acceleration over the human conciousness allowance, the serious injury will be happened during the FFL launching.According to the conditions, the IMO regulations have standard for the acceptance criteria of FFL shock acceleration induced by water entry impact load. The results measurement of Combined Acceleration Ratio Index (CAR) or Combined Dynamic Response Ratio Index (CDRR) should be comply with the IMO index criteria.In this paper, the methodology of FFL acceleration response prediction by the simulation model analysis will be proposed. The simulation model will be developed by using LS-Dyna code. The Simplified Arbitratry Lagrangian Eulerian Coupling will be used to define the coupling analysis between the Lifeboats (Lagrangian elements) with Water Fluids (the Eulerian Elements)Keywords: Free Fall Lifeboat, Response Acceleration, Impact Load


Author(s):  
Tanvir Mehedi Sayeed ◽  
Bruce Colbourne ◽  
Heather Peng ◽  
Benjamin Colbourne ◽  
Don Spencer

Iceberg/bergy bit impact load with fixed and floating offshore structures and supply ships is an important design consideration in ice-prone regions. Studies tend to divide the iceberg impact problem into phases from far field to contact. This results in a tendency to over simplify the final crucial stage where the structure is impacted. The authors have identified knowledge gaps and their influence on the analysis and prediction of iceberg impact velocities and loads (Sayeed et. al (2014)). The experimental and numerical study of viscous dominated very near field region is the main area of interest. This paper reports preliminary results of physical model tests conducted at Ocean Engineering Research Center (OERC) to investigate hydrodynamic interaction between ice masses and fixed offshore structure in close proximity. The objective was to perform a systematic study from simple to complex phenomena which will be a support base for the development of subsequent numerical models. The results demonstrated that hydrodynamic proximity and wave reflection effects do significantly influence the impact velocities at which ice masses approach to large structures. The effect is more pronounced for smaller ice masses.


Author(s):  
Zhenjia (Jerry) Huang ◽  
Robert Oberlies ◽  
Don Spencer ◽  
Jang Kim

For the design of offshore structures in harsh wave environments, it is essential to accurately determine the wave impact loads on the structure. To date, robust numerical prediction methods / algorithms for determining wave impact forces on offshore structures do not exist. Model testing continues to be the industry practice for determining wave impact forces on offshore structures. Accurate measurements of wave impact loads in model tests have been challenging for several decades. Transducers require the ability to capture the short duration, dynamic nature and high magnitude of impact loads. In order to qualify transducers for these types of measurements, we need to develop a way to physically impose dynamic impact loads on the transducers and to establish benchmark values that can be used to check the effectiveness of their measurements. In this paper, we present our recent research work on transducer qualification for wave impact load measurements, including their development, numerical analysis and wedge drop model tests. Our findings show that wedge drop tests can be used to impose dynamic impact loads for transducer qualification, and that the Wagner solution and / or validated computational fluid dynamics (CFD) simulations that include the effects of viscosity, compressibility and hydroelasticity can provide the appropriate benchmarking values. Numerical simulation results, model test measurements and findings on transducer qualification are presented and discussed in the paper.


Author(s):  
Sujay Deshpande ◽  
Ane Sæterdal ◽  
Per-Arne Sundsbø

Abstract Ice accretion on marine vessels and offshore structures is a severe hazard in the Polar Regions. There is increasing activities related to oil and gas exploration, tourism, cargo transport, and fishing in the Arctic. Ice accretion can cause vessel instability, excess load on marine structures and represents a safety risk for outdoor working environment and operations. Freezing sea spray is the main contributor to marine icing. For safe operations in cold climate, it is essential to have verified models for prediction of icing. Sea spray icing forecast models have improved. Empirical and theoretical models providing icing rates based may be useful as guidelines. For predicting the distribution of icing on a surface at the design stage, Computational Fluid Dynamics has to be applied along with a freezing module. State-of-the-art models for numerical simulation of sea spray icing are still not fully capable of modelling complex ship-sea-wind interactions with spray generation and impact of shipped water. Existing models include good understanding of spray flow effects and freezing. Further development should focus on developing models for dynamic ship-sea-wind interactions, in particular including spray generation, effects of shipped water and distribution of icing on the vessel surface. More experimental and full-scale data is needed for development and verification of new and improved models. Models that estimate ice distribution may improve the winterization design process and reduce effort required for de-icing. Improved methods for de-icing and anti-icing will reduce the impact of sea spray icing and increase safety for marine operations in cold waters.


Author(s):  
Saeid Kazemi ◽  
Atilla Incecik

An experimental study for predicting the air gap and potential deck impact of a floating offshore structure is the main topic of this research. Numerical modeling for air gap prediction is particularly complicated in the case of floating offshore structures because of their large volume, and the resulting effects of wave diffraction and radiation. Therefore, for new floating platforms, the model tests are often performed as part of their design process. This paper summarizes physical model tests conducted on a semi-submersible model, representing a 1-to-100 scale model of a GVA4000 class, “IRAN-ALBORZ”, the largest semi-submersible platform in the Caspian Sea, under construction in North of Iran, to evaluate the platform’s air gap at different locations of its deck and also measure the impact forces in case of having negative air gap. The model was tested in regular waves in the wave tank of Newcastle University. The paper discusses the experimental setup, test conditions, and the resulting measurements of the air gap and the wave impact forces by using eight wave probes and three load cells located at different points of the lower deck of the platform.


Author(s):  
Marc Cahay ◽  
Brian A. Roberts ◽  
Kenton Pike ◽  
Pierre-Antoine Béal ◽  
Cyril Septseault ◽  
...  

In 2012 TechnipFMC, Cervval and Bureau Veritas initiated a common development program to offer a new tool for the design of offshore structures interacting with ice combining a variety of models and approaches. This numerical tool called Ice-MAS (www.ice-mas.com) is using a multi-agent technology and has the possibility to combine in a common framework multiple phenomena from various natures and heterogeneous scales (i.e. drag, friction, ice-sheet bending failure, local crushing and rubble stack up). The current development phase consists of the determination of the forces generated by an iceberg during an impact on an offshore structure. This paper will provide an overview of the latest Ice-MAS development. It will introduce the main functionalities of the simulation tool and the different options for modelling an offshore structure. It will then focus on the modelling approach used for an iceberg, the calculation of the different hydrodynamic coefficients and their variability according to the separation distance from the structure. The model used to compute the impact load will be detailed, including the local crushing behavior which is simulated by a pressure-area correlation.


Author(s):  
Jule Scharnke ◽  
Tone Vestbøstad ◽  
Jaap de Wilde ◽  
Sverre Haver

New methods for estimation of extreme wave crest heights have resulted in an increase of the estimated 10,000 year crest height. At the Norwegian Continental Shelf this increase is typically 2 to 4 m, resulting in a crest height of 22 m to 24 m in the Central & Northern North Sea and the Haltenbanken area. As a result several fixed platforms designed prior to 2000 may experience negative air gap if being hit by the 10,000 year wave crest height. Numerical methods have been used for assessing wave-in-deck impact loads. The model tests discussed in this paper were conducted to be used as verification of the numerical codes. For the model tests two sea states along the 10,000 year contour line were considered. Several 3-hour (full scale time) realizations were calibrated in order to capture the natural variability of the most extreme crest heights. For wave deck impact problems, one is merely interested in the few very large wave crests out of a 3-hour simulation. A more efficient test scope would, therefore, be to generate only the largest wave groups of the realizations. For this reason the most extreme crest(s) per sea state were identified and most wave-in-deck tests were conducted by generating only the part of the time series containing the large crest(s). The wave calibration results were discussed in a previous paper, see [1]. For the wave-in-deck model tests, an existing North Sea jacket was built at scale 1:60 and instrumented in order to measure the global loads on the platform deck independently from the loads on the jacket itself. In this paper the model test setup as well as the measured wave-in-deck impact loads are discussed and compared to a simplified load prediction model. The presented results show that the simplified loading model, with wave properties based on Stokes 5th order wave theory, underestimates the measured horizontal deck loads.


Author(s):  
Thomas B. Johannessen ◽  
Øystein Lande ◽  
Øistein Hagen

For offshore structures in harsh environments, horizontal wave impact loads should be taken into account in design. Shafts on GBS structures, and columns on semisubmersibles and TLPs are exposed to impact loads. Furthermore, if the crest height exceeds the available freeboard, the deck may also be exposed to wave impact loads. Horizontal loads due to waves impacting on the structure are difficult to quantify. The loads are highly intermittent, difficult to reproduce in model tests, have a very short duration and can be very large. It is difficult to calculate these loads accurately and the statistical challenges associated with estimating a value with a prescribed annual probability of occurrence are formidable. Although the accurate calculation of crest elevation in front of the structure is a significant challenge, industry has considerable experience in handling this problem and the analysis results are usually in good agreement with model test results. The present paper presents a statistical model for the distribution of horizontal slamming pressures conditional on the incident crest height upwave of the structure. The impact load distribution is found empirically from a large database of model test results where the wave impact load was measured simultaneously at a large number of panels together with the incident crest elevation. The model test was carried out on a circular surface piercing column using long simulations of longcrested, irregular waves with a variety of seastate parameters. By analyzing the physics of the process and using the measured crest elevation and the seastate parameters, the impact load distribution model is made seastate independent. The impact model separates the wave impact problem in three parts: – Given an incident crest in a specified seastate, calculate the probability of the crest giving a wave impact load above a threshold. – Given a wave impact event above a threshold, calculate the distribution of the resulting peak load. – Given a peak load, calculate the distribution of slamming pressures at one spatial location. The development of the statistical model is described and it is shown that the model is appropriate for fixed and floating structures and for wave impact with both columns and the deck box.


Sign in / Sign up

Export Citation Format

Share Document