Abstract
The Valdemar field, located in the Danish sector of the North Sea, targets a Lower Cretaceous, "dirty chalk" reservoir characterized by low permeabilities of <0.5mD, high porosities of >20% and contains up to 25% insoluble fines. To produce economically the reservoir must be stimulated. Typically, this is by means of hydraulic fracturing. A traditional propped fracture consists of 500,000 to 1,000,000 lbs of 20/40 sand, placed using a crosslinked seawater-based borate fluid. The existing wells in the field are completed using the PSI (perforate, isolate, stimulate)1 system. This system was developed in the late 1980s as a way of improving completion times allowing each interval to be perforated, stimulated and isolated in a single trip and has been used extensively in the Danish North Sea in a variety of fields. The system consists of multiset packers with sliding sleeves and typically takes 2-3 days between the start of one fracture to the next.
Future developments in this area now require a new, novel and more efficient approach owing to new target reservoir being of a thinner and poorer quality. In order for these new developments to be economical an approach was required to allow for longer wells to be drilled and completed allowing better reservoir connectivity whilst at the same time reducing the completion time, and therefore rig time and overall cost.
A project team was put together to develop a system that could be used in an offshore environment that would satisfy the above criteria, allowing wells to be drilled out to 21,000ft and beyond in excess of coiled tubing reach. The technology developed consists of cemented frac sleeves, operated with jointed pipe, allowing multiple zones to be stimulated in one trip, as well as utilizing a modified BHA that allows for the treatments to take place through the tubing, bringing numerous benefits.
The following paper details the reasons for developing the new technology, the development process itself, the challenges that had to be overcome and a case history on the execution of the first job of its kind in the North Sea, in which over 7MM lbs of sand was pumped successfully, as well as the post treatment operations which included a proof of concept in utilizing a tractor to manipulate the sleeves. Finally, the production performance will be discussed supported by the use of tracer subs at each of the zones.