Development of 3MW Tidal Energy Platform

Author(s):  
Erik ter Brake ◽  
Mike Todman ◽  
John Armstrong

The Triton-3 platform is a novel tidal energy harvester capable of producing 3MW from tidal flow. The platform is a floating structure moored to the seabed by a single-point fully articulated anchorage, and carries three power trains and a number of marine auxiliaries. The driver for the design as developed by TidalStream Ltd is to reduce the cost of energy production in order to compete with the current cost of offshore wind. Independently audited cost modelling shows that tidal stream energy can become competitive with offshore wind, achieving a generating cost as low as 10p/kWh at the best sites. This generating cost is estimated to be less than half that which could be achieved at a similar site from a single seabed-located turbine. The driving aspects for the competitive cost are maximising the capacity per mooring point, reducing installation costs by float-out solutions and by providing easy access to the tidal equipment. Access is achieved by allowing the platform to come to the surface by means of de-ballasting. By doing so, there is no need for large workboats and/or diver activities to perform regular inspection and maintenance on the tidal equipment, reducing the cost significantly. The technical aspects that arise when developing the tidal turbine platform for a typical offshore location are investigated by Houlder Ltd and discussed in this paper. A number of technical challenges have been addressed where the rotational stability in both roll and pitch are of interest. The roll of the platform is heavily affected by the performance of the turbines; sudden increase or reduction in thrust will induce significant rolling moments that must not impair the integrity of the platform. Pitching of the platform allows it to reach the surface when de-ballasted for maintenance and inspection. During normal operations, the platform remains aligned with the current and in doing so maximises the performance of the turbines. The paper illustrates how these aspects have been achieved by means of passive solutions. By means of positioning and shaping the main body of the platform, a working configuration has been developed where the rotations of the platform remain within a limited window maximising the potential power production. The concept has been tested by TidalStream during a large-scale model testing campaign where the unit was subject to different current speeds and different turbine configurations and fault cases. This publication compares the results of the large scale model testing with numerical models developed in OrcaFlex and shows the effectiveness of the passive solutions.

2018 ◽  
Vol 37 (2) ◽  
pp. 142-148
Author(s):  
Fan Pengxian ◽  
Wang Jiabo ◽  
Shi Yehui ◽  
Wang Derong ◽  
Tan Jinzhong ◽  
...  

Analogue materials are widely used to simulate prototype rocks in geo-mechanical model tests. The large amounts of solid waste generated by a large-scale model test has always posed problems for studies. The re-use of analogue materials can significantly reduce the cost of geo-mechanical model tests and the resulting environmental problems. However, despite the environmental and economic benefits, there have been few reports on the re-use of analogue materials. In this work, a recycling method for a resin-based analogue material is studied experimentally. More than 300 samples were prepared and tested. By adding a certain amount of resin in solution form to the recycled material, regenerated samples with properties consistent with those of the samples prior to recycling were obtained. Based on a comparative analysis of the test data, an equation is proposed for the calculation of the appropriate amount of resin addition in the recycling process. Thus, a simple and effective recycling method is established for a resin-based analogue material. Verification was performed by independent tests on three group samples with different proportions, and the possibility of repeated recycling was also confirmed. The proposed recycling method makes the cyclic utilization of resin-based analogue material possible and is helpful for reducing the cost and pollution of geo-mechanical model tests.


1996 ◽  
Vol 19 (1) ◽  
pp. 32 ◽  
Author(s):  
RC Chaney ◽  
K Demars ◽  
SW Agaiby ◽  
FH Kulhawy ◽  
CH Trautmann

2016 ◽  
Vol 123 ◽  
pp. 174-190 ◽  
Author(s):  
Jialong Jiao ◽  
Huilong Ren ◽  
Shuzheng Sun ◽  
Ning Liu ◽  
Hui Li ◽  
...  

1998 ◽  
Author(s):  
E. Huse ◽  
G. Kleiven ◽  
F.G. Nielsen

1989 ◽  
pp. 919-928
Author(s):  
M. Brumovský ◽  
R. Filip ◽  
H. Polachová ◽  
S. Štěpánek ◽  
M. Brumovský ◽  
...  

Author(s):  
Nils Hinzmann ◽  
Patrick Lehn ◽  
Jörg Gattermann

Abstract As of now, only a small number of offshore foundations, related to offshore wind energy, were decommissioned in Europe. With a diameter up to nine meter, an embedment of about 40 meter and a set up effect over 25 years, the necessary force to pull the pile out of the seabed can be assumed, if at all determinable, to be enormous. The piles that were decommissioned were cut beneath the mud line, which leaves approximately one third of the foundation permanently in the seabed. Different methods and techniques for a complete removal of offshore pile foundation are currently investigated within the project DeCoMP. Vibratory extraction aims for a reduction of the pile skin friction by creating a layer of less density between the pile shaft and pending soil. During the design and planning process for vibratory installation or extraction a drivability prediction is a key element. In order to identify and characterize soil parameter for the numerical simulation of a drivability prediction, large-scale tests are performed by the Institute of Geomechanics and Geotechnics of the Technische Universität Braunschweig (IGG-TUBS) [1]. In this paper first results of pilot tests with two vibrators are presented and key elements such as crane uplift, frequency and acceleration displayed.


Sign in / Sign up

Export Citation Format

Share Document