A Novel Measure to Reduce Ship Resistance in Waves

Author(s):  
Bingjie Guo ◽  
Bjørn-Johan Vartdal ◽  
Sverre Steen

Ships travel in waves most of the time. The horsepower increase or speed loss in waves can become large in adverse sea. Speed loss needs to be compensated for by increasing the power. Moreover, the associated speed-loss can possibly not be compensated due to the limit of installed power. This will cause delays, and may even lead to safety concerns in maneuvering. Thus, there is a need for minimizing added resistance due to both economical and safety reasons. Ships with better performance in waves even with reduced power are desired. Latest researches on advanced ship optimization are taking added resistance into account. Ship bow optimization has been the main measure to reduce added resistance in waves. Based on analyzing the working principles and potential benefit of the different kinds of novel ship bows, a novel measure is proposed to reduce the ship resistance in waves is proposed. A novel measure to reduce the ship resistance in waves of existing ships by installing a simple structure at the ship bow. The structure is designed to sharpen the ship bow and therefore reduce added resistance due to wave reflection. Thus, it is suitable for the large tankers and bulk carriers, which have blunt bows. The volume above free surface was expected to reduce ship motions and the added resistance due to ship motions consequently. This measure does not change the original ship design. It can be retrofitted on existing ships fairly easily at low cost. In order to verify the benefit due to the retrofitted structure, CFD simulations are performed in both head and oblique waves, which can take 3D effect into account. Four different retrofitted structures are designed and the numerical simulations are performed with the same numerical and mesh settings in each wave condition. The CFD simulation results confirm that the novel measure can reduce ship added resistance efficiently and it also has benefits in oblique waves.

Author(s):  
Gwan Hoon Kim ◽  
Hyun Joon Shin ◽  
Jeonghwa Seo ◽  
Shin Hyung Rhee

In this study, numerical computation was carried out for evaluating the effects of the design parameter variations on the added resistance of Aframax tanker in head seas. The design of experiments (DOE) was used to efficiently conduct the numerical simulations with the hull form variations and save computational resources. A computational fluid dynamics (CFD) code based on the continuity and Reynolds averaged Navier-Stokes (RANS) equation was used for the numerical simulation. The simulation was performed in a short wave condition where the wave length was half of the ship length, which is expected to be most frequent in the vessel operation. Five design parameters of fore-body hull form were selected for the variations: design waterline length (DWL), bulbous bow height (BBH), bulbous bow volume (BBV), bow flare angle (BFA) and bow entrance angle (BEA). Each parameter had two levels in the variations, thus total 32 cases were designed initially. The results of the numerical simulations were analyzed statistically to determine the main effects and correlations in the five design parameters variations. Among them, the most significant parameter that influences on the added resistance in waves was DWL, followed by BBV and BEA. The other parameters had little effects on the added resistance in waves. By the computations, it was revealed that Extending DWL and decreasing BEA promoted the reflection of waves more toward the side than forward. In addition, there existed two-way interactions for the following two-factor combinations: DWL-BFA, DWL-BEA, DWL-BBV, BBH-BBV.


Author(s):  
Z.M. Htet

В данной статье на основе предложенного расчета качки судна с энергосберегающими крыльевыми устройствами производится оценка мореходности и ходкости такого судна и возможности целенаправленного уменьшения амплитуд качки и снижения дополнительного сопротивления на волнении. Продольная качка судна заданного типа, обводов и размерений при наличии крыльевых элементов на заданном регулярном волнении рассчитывается с привлечением совместных уравнений вертикально-килевой качки с учетом демпфирования и инерции крыльевых устройств. При этом используется теория Теодорсена колеблющегося профиля и разложение нестационарных коэффициентов подъемной силы и момента по кинематическим параметрам при комбинировании вертикальных и угловых колебаний, и, в общем случае, в условиях воздействия орбитального движения жидкости. Для оценки дополнительного сопротивления используется теория Герритсмы и Бекельмана. В ходе расчетов демонстрируется влияние на дополнительное сопротивление удлинения и площади энергосберегающих крыльев, а также возможности снижения дополнительного сопротивления при совместном использовании носового и кормового крыльев по сравнению со случаем использования только одного (носового или кормового) крыла. Полученные расчетные данные позволяют получить представление о механизме влияния энергосберегающих крыльев на умерение амплитуд качки и снижение дополнительного сопротивления на волнении.In this article on the basis of the method for calculation of longitudinal motions of a ship with energy-saving wing devices proposed there is made an estimation of seaworthiness and seagoing capacity of such a ship and also of a possibility of directed decrease of ship motions amplitudes and added resistance in waves. The longitudinal motions of a ship of a given type, configuration and dimensions, in presence of wing elements, and in given regular waves is calculated with use of coupled equations of heave and pitch motions with account of damping and inertia of wing devices. Used therewith is Theodorsen theory of oscillating foil and expansion of lift and moment coefficients with respect to kinematic parameters for combined heave-and-pitch oscillations and, in general case, subject to action of orbital motion of fluid particles. To estimate added resistance the Beuklman-Gerritsma theory is used. Demonstrated in the course of calculations is the influence of aspect ratio and area of energy-saving wing upon the added resistance as well as upon its decrease when combining use of both bow and stern wings as compared to the case of using just one (bow or stern) wing. Obtained calculated data allow to understand the mechanism of the influence of energy-saving wings upon decrease of the amplitude of ship motions and the added resistance in waves.


Author(s):  
Jens Ley ◽  
Sebastian Sigmund ◽  
Ould el Moctar

The added resistance in waves is computed for different ship types using two different Reynolds-Averaged Navier-Stokes Equations (RANSE) solvers, namely Comet and interFoam (OpenFOAM). Hence, the RANS equations are implicitly coupled with the non-linear equations of motions for six degrees of freedom and the solvers are extended by algorithms for mesh morphing to account for ship motions. The computational effort for these simulations is high compared to potential flow based simulations, especially for short waves. However, to understand the physics related to added resistance of ships and to investigate influencing parameters, field methods based on RANS equations may be suitable. The prediction of the added resistance in waves consists of two steps; the computations of the calm water resistance and the total resistance in waves. The discretisation errors as well as the influence of the surge motions on the added resistance are investigated. Further, the added resistance is decomposed in diffraction and radiation problems as it is commonly done in potential theory.


Author(s):  
Hideo Orihara

ABSTRACTIn this paper, CFD simulation results for a tanker model are compared with experimental data over a range of wave conditions to verify a capability to predict the sea-keeping performance of practical hull forms. CFD simulations are conducted using WISDAM-X code which is capable of unsteady RANS calculations in arbitrary wave conditions. Comparisons are made of unsteady surface pressures, added resistance and ship motions in regular waves for cases of fully-loaded and ballast conditions of a large tanker model. It is shown that the simulation results agree fairly well with the experimental data, and that WISDAM-X code can predict sea-keeping performance of practical hull forms.


2021 ◽  
Vol 9 (12) ◽  
pp. 1459
Author(s):  
Qingze Gao ◽  
Lifei Song ◽  
Jianxi Yao

The wave-induced motions, and steady wave forces and moments for the oil tanker KVLCC2 in regular head and oblique waves are numerically predicted by using the expanded RANS solver based on OpenFOAM. New modules of wave boundary condition are programed into OpenFOAM for this purpose. In the present consideration, the steady wave forces and moments include not only the contribution of hydrodynamic effects but also the contribution of the inertial effects due to wave-induced ship motions. The computed results show that the contribution of the inertial effects due to heave and pitch in head waves is non-negligible when wave-induced motions are of large amplitude, for example, in long waves. The influence of wave amplitude on added resistance in head waves is also analyzed. The dimensionless added resistance becomes smaller with the increasing wave amplitude, indicating that added resistance is not proportional to the square of wave amplitude. However, wave amplitude seems not to affect the heave and pitch RAOs significantly. The steady wave surge force, sway force and yaw moment for the KVLCC2 with zero speed in oblique waves are computed as well. The present RANS results are compared with available experimental data, and very good agreements are found between them.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Yehe Liu ◽  
Andrew M. Rollins ◽  
Richard M. Levenson ◽  
Farzad Fereidouni ◽  
Michael W. Jenkins

AbstractSmartphone microscopes can be useful tools for a broad range of imaging applications. This manuscript demonstrates the first practical implementation of Microscopy with Ultraviolet Surface Excitation (MUSE) in a compact smartphone microscope called Pocket MUSE, resulting in a remarkably effective design. Fabricated with parts from consumer electronics that are readily available at low cost, the small optical module attaches directly over the rear lens in a smartphone. It enables high-quality multichannel fluorescence microscopy with submicron resolution over a 10× equivalent field of view. In addition to the novel optical configuration, Pocket MUSE is compatible with a series of simple, portable, and user-friendly sample preparation strategies that can be directly implemented for various microscopy applications for point-of-care diagnostics, at-home health monitoring, plant biology, STEM education, environmental studies, etc.


NANO ◽  
2018 ◽  
Vol 13 (05) ◽  
pp. 1850052
Author(s):  
Yuanyuan Zhou ◽  
Jianying Deng ◽  
Shimei Li ◽  
Zefeng Li

Core–shell Cu@Ni chains were successfully synthesized through a mild hydrothermal reaction. The morphology, structure and microwave electromagnetic properties of the composite were then characterized by X-ray diffraction, energy-dispersive spectroscopy, scanning electron microscopy and vector network analysis. The formation mechanisms of the core–shell structure and one-dimensional chains were ascribed to the varying redox potentials of Cu and Ni ions and the magnetic dipole–dipole attraction. Furthermore, a minimal reflection loss (RL) of [Formula: see text]20.7[Formula: see text]dB was observed at 9.6[Formula: see text]GHz with a thickness of 2.0[Formula: see text]mm and the effective absorption ([Formula: see text]10[Formula: see text]dB, 90% microwave attenuation) bandwidth can be adjusted between 5.2[Formula: see text]GHz and 16.6[Formula: see text]GHz for the thin absorber thickness of 2.0–4.0[Formula: see text]mm. The novel core–shell chain-like Cu@Ni alloy can be used as a promising absorbing material because it shows numerous features such as thin thickness, strong absorption, low cost and lightweight.


Author(s):  
Lee-Huang Chen ◽  
Kyunam Kim ◽  
Ellande Tang ◽  
Kevin Li ◽  
Richard House ◽  
...  

This paper presents the design, analysis and testing of a fully actuated modular spherical tensegrity robot for co-robotic and space exploration applications. Robots built from tensegrity structures (composed of pure tensile and compression elements) have many potential benefits including high robustness through redundancy, many degrees of freedom in movement and flexible design. However to fully take advantage of these properties a significant fraction of the tensile elements should be active, leading to a potential increase in complexity, messy cable and power routing systems and increased design difficulty. Here we describe an elegant solution to a fully actuated tensegrity robot: The TT-3 (version 3) tensegrity robot, developed at UC Berkeley, in collaboration with NASA Ames, is a lightweight, low cost, modular, and rapidly prototyped spherical tensegrity robot. This robot is based on a ball-shaped six-bar tensegrity structure and features a unique modular rod-centered distributed actuation and control architecture. This paper presents the novel mechanism design, architecture and simulations of TT-3, the first untethered, fully actuated cable-driven six-bar tensegrity spherical robot ever built and tested for mobility. Furthermore, this paper discusses the controls and preliminary testing performed to observe the system’s behavior and performance.


1997 ◽  
Vol 51 (8) ◽  
pp. 1106-1112 ◽  
Author(s):  
H. Weidner ◽  
R. E. Peale

A low-cost method of adding time-resolving capability to commercial Fourier transform spectrometers with a continuously scanning Michelson interferometer has been developed. This method is specifically designed to eliminate noise and artifacts caused by mirror-speed variations in the interferometer. The method exists of two parts: (1) a novel timing scheme for synchronizing the transient events under study and the digitizing of the interferogram and (2) a mathematical algorithm for extracting the spectral information from the recorded data. The novel timing scheme is a modification of the well-known interleaved, or stroboscopic, method. It achieves the same timing accuracy, signal-to-noise ratio, and freedom from artifacts as step-scan time-resolving Fourier spectrometers by locking the sampling of the interferogram to a stable time base rather than to the occurrences of the HeNe fringes. The necessary pathlength-difference information at which samples are taken is obtained from a record of the mirror speed. The resulting interferograms with uneven pathlength-difference spacings are transformed into wavenumber space by least-squares fits of periodic functions. Spectra from the far-infrared to the upper visible at resolutions up to 0.2 cm−1 are used to demonstrate the utility of this method.


Sign in / Sign up

Export Citation Format

Share Document