Fluid Drag With and Without Vortex-Induced Vibrations
Abstract Fluid drag is an integrated force that depends on the velocity of the fluid flow relative to the motion of a structure. In previous OMAE papers, we used nonlinear physics-based time-domain simulations to show how fluid drag evolves geometric changes in slender (long and thin) structures. We then showed how these changes physically determine the specific dynamic nature of the vibrations that the fluid can induce in the structure. Induced vibrations are four-dimensional oscillations in a marine riser, suspended pipe or other slender structure, whereby the maximum amplitude of deflection is generally perpendicular to the sustained action. The sustained action is often fluid drag. In this paper, we study the physical relationship between fluid drag and induced vibrations. By focusing on the nonlinear interaction between fluid and structure, we revisit a longstanding belief that vortex-induced vibrations amplify fluid drag. Using nonlinear physics-based simulations of a slender structure interacting with flowing fluid, we show how amplification depends on the type of vibration (imposed or free). In other words, drag amplification can occur when we impose a vibration on the structure, but does not occur when we allow sufficient geometric freedom so that the fluid merely induces the structure to vibrate. Using simple visual experiments, we confirm that Vortex-Induced Vibrations (VIV) do not amplify fluid drag. This result is consistent with basic energy conservation principles.