two degree of freedom
Recently Published Documents


TOTAL DOCUMENTS

2266
(FIVE YEARS 337)

H-INDEX

57
(FIVE YEARS 5)

Author(s):  
Jiuhui Wu ◽  
Shaokun Yang

Abstract In this paper, a novel kind of anti-gravity technology by non-positive equivalent mass of aircraft is presented to try to reveal UFO flying secrets. Starting with a two-degree-of-freedom system, it is found that the system could produce an infinite acceleration under the condition of zero dynamic equivalent mass[1], and also provide a movement opposite to the direction of the external force under the negative equivalent mass[2]. These two cases with non-positive equivalent mass[3] could both be regarded as a novel kind of anti-gravity technology[4,5], which is also verified by a designed dynamic simulation experiment. For any aircraft that can be regarded as a multi-degree-of-freedom system driven by engine or other external forces[6], the non-positive equivalent mass could be designed out once the external input including gravity and engine exciting forces is known[7]. Thus the anti-gravity technology for any aircraft could be realized, which could also be extended to matters related to flight, such as space ships, missiles, airplanes, etc[8].


Author(s):  
Guobiao Hu ◽  
Chunbo Lan ◽  
Junrui Liang ◽  
Lihua Tang ◽  
Liya Zhao

This paper presents a study of a two-degree-of-freedom (2DOF) piezoelectric energy harvester (PEH) under concurrent aeroelastic and base excitation. The governing equations of the theoretical model under the combined excitation are developed and solved analytically using the harmonic balance method. Based on the electro-mechanical analogies, an equivalent circuit model is established. The energy harvesting performance of the 2DOF PEH under different wind speeds but the same base excitation is investigated. Voltage amplitudes of various response components with different frequencies are predicted by the analytical method and verified by the circuit simulation. The root-mean-square (RMS) voltage is used to measure the actual performance of the 2DOF PEH. Around the resonance state, the 2DOF PEH has been found to produce a larger voltage output than the conventional SDOF PEH. Moreover, several interesting phenomena, such as the quasi-periodic oscillation and the peak-to-valley transition, have been observed in the circuit simulation and explained by the analytical solution. The developed methodology in this paper can be easily adapted to analyze other similar types of multiple-degree-of-freedom (MDOF) PEHs under concurrent aeroelastic and base excitation.


2022 ◽  
Author(s):  
Adam Bouma ◽  
Erik Le ◽  
Rui Vasconcellos ◽  
Abdessatar Abdelkefi

Machines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 374
Author(s):  
Mattia Rossi ◽  
Maria Stefania Carmeli ◽  
Marco Mauri

This paper proposes a model-based two-degree-of-freedom (2DOF) speed control for a medium voltage (MV) variable speed drive (VSD) connected to a centrifugal compressor (CC) train. Torsional mode excitations in the drive shaft due to converter switching behaviour are considered. An effective description of the harmonics transfer is proposed. The tuning strategy aims to optimize the tracking behaviour of the step and ramp command, taking care of critical speed excitations. The stability of the closed-loop dynamics against time delay and drive parameter variations are studied by means of Nyquist diagrams and time-domain simulations. A descriptive method for the process damping behaviour is proposed. The control strategy is evaluated through simulations as well as an experimental setup, based on a hardware in the loop (HIL) in a master–slave configuration.


Mathematics ◽  
2021 ◽  
Vol 9 (24) ◽  
pp. 3201
Author(s):  
Dongping He ◽  
Huidong Xu ◽  
Tao Wang ◽  
Zhihua Wang

This paper investigates quasi-periodic oscillations of roll system in corrugated rolling mill in resonance. The two-degree of freedom vertical nonlinear mathematical model of roller system is established by considering the nonlinear damping and nonlinear stiffness within corrugated interface of corrugated rolling mill. In order to investigate the quasi-periodic oscillations at the resonance points, the Poincaré map is established by solving the power series solution of dynamic equations. Based on the Poincaré map, the existence and stability of quasi-periodic oscillations from the Neimark-Sacker bifurcation in the case of resonance are analyzed. The numerical simulation further verifies the correctness of the theoretical analysis.


Author(s):  
Noriko Shimomura ◽  
Tomoya Miyoshi ◽  
Hisayuki Ashizawa ◽  
Hiroyuki Mitsuya ◽  
Gen Hashiguchi ◽  
...  

2021 ◽  
Author(s):  
◽  
Ben Haughey

<p>Development in pick-and-place robotic manipulators continues to grow as factory processes are streamlined. One configuration of these manipulators is the two degree of freedom, planar, parallel manipulator (2DOFPPM). A machine building company, RML Engineering Ltd., wishes to develop custom robotic manipulators that are optimised for individual pick-and-place applications. This thesis develops several tools to assist in the design process. The 2DOFPPM’s structure lends itself to fast and accurate translations in a single plane. However, the performance of the 2DOFPPM is highly dependent on its dimensions. The kinematics of the 2DOFPPM are explored and used to examine the reachable workspace of the manipulator. This method of analysis also gives insight into the relative speed and accuracy of the manipulator’s end-effector in the workspace. A simulation model of the 2DOFPPM has been developed in Matlab’s® SimMechanics®. This allows the detailed analysis of the manipulator’s dynamics. In order to provide meaningful input into the simulation model, a cubic spline trajectory planner is created. The algorithm uses an iterative approach of minimising the time between knots along the path, while ensuring the kinematic and dynamic limits of the motors and end-effector are abided by. The resulting trajectory can be considered near-minimum in terms of its cycle-time. The dimensions of the 2DOFPPM have a large effect on the performance of the manipulator. Four major dimensions are analysed to see the effect each has on the cycle-time over a standardised path. The dimensions are the proximal and distal arms, spacing of the motors and the height of the manipulator above the workspace. The solution space of all feasible combinations of these dimensions is produced revealing cycle-times with a large degree of variation over the same path. Several optimisation algorithms are applied to finding the manipulator configuration with the fastest cycle-time. A random restart hill-climber, stochastic hill-climber, simulated annealing and a genetic algorithm are developed. After each algorithm’s parameters are tuned, the genetic algorithm is shown to outperform the other techniques.</p>


2021 ◽  
Vol 8 ◽  
Author(s):  
Gilles Decroly ◽  
Pierre Lambert ◽  
Alain Delchambre

The rise of soft robotics opens new opportunities in endoscopy and minimally invasive surgery. Pneumatic catheters offer a promising alternative to conventional steerable catheters for safe navigation through the natural pathways without tissue injury. In this work, we present an optimized 6 mm diameter two-degree-of-freedom pneumatic actuator, able to bend in every direction and incorporating a 1 mm working channel. A versatile vacuum centrifugal overmolding method capable of producing small geometries with a variety of silicones is described, and meter-long actuators are extruded industrially. An improved method for fiber reinforcement is also presented. The actuator achieves bending more than 180° and curvatures of up to 0.1 mm−1. The exerted force remains below 100 mN, and with no rigid parts in the design, it limits the risks of damage on surrounding tissues. The response time of the actuator is below 300 ms and therefore not limited for medical applications. The working space and multi-channel actuation are also experimentally characterized. The focus is on the study of the influence of material stiffness on mechanical performances. As a rule, the softer the material, the better the energy conversion, and the stiffer the material, the larger the force developed at a given curvature. Based on the actuator, a 90 cm long steerable catheter demonstrator carrying an optical fiber is developed, and its potential for endoscopy is demonstrated in a bronchial tree phantom. In conclusion, this work contributes to the development of a toolbox of soft robotic solutions for MIS and endoscopic applications, by validating and characterizing a promising design, describing versatile and scalable fabrication methods, allowing for a better understanding of the influence of material stiffness on the actuator capabilities, and demonstrating the usability of the solution in a potential use-case.


2021 ◽  
Author(s):  
◽  
Ben Haughey

<p>Development in pick-and-place robotic manipulators continues to grow as factory processes are streamlined. One configuration of these manipulators is the two degree of freedom, planar, parallel manipulator (2DOFPPM). A machine building company, RML Engineering Ltd., wishes to develop custom robotic manipulators that are optimised for individual pick-and-place applications. This thesis develops several tools to assist in the design process. The 2DOFPPM’s structure lends itself to fast and accurate translations in a single plane. However, the performance of the 2DOFPPM is highly dependent on its dimensions. The kinematics of the 2DOFPPM are explored and used to examine the reachable workspace of the manipulator. This method of analysis also gives insight into the relative speed and accuracy of the manipulator’s end-effector in the workspace. A simulation model of the 2DOFPPM has been developed in Matlab’s® SimMechanics®. This allows the detailed analysis of the manipulator’s dynamics. In order to provide meaningful input into the simulation model, a cubic spline trajectory planner is created. The algorithm uses an iterative approach of minimising the time between knots along the path, while ensuring the kinematic and dynamic limits of the motors and end-effector are abided by. The resulting trajectory can be considered near-minimum in terms of its cycle-time. The dimensions of the 2DOFPPM have a large effect on the performance of the manipulator. Four major dimensions are analysed to see the effect each has on the cycle-time over a standardised path. The dimensions are the proximal and distal arms, spacing of the motors and the height of the manipulator above the workspace. The solution space of all feasible combinations of these dimensions is produced revealing cycle-times with a large degree of variation over the same path. Several optimisation algorithms are applied to finding the manipulator configuration with the fastest cycle-time. A random restart hill-climber, stochastic hill-climber, simulated annealing and a genetic algorithm are developed. After each algorithm’s parameters are tuned, the genetic algorithm is shown to outperform the other techniques.</p>


Sign in / Sign up

Export Citation Format

Share Document