The Bioceanic Amazon Corridors: An Opportunity for Development of Sustainable Energy System

Author(s):  
Pedro Mendoza G. ◽  
Maximiliano Arroyo Ulloa ◽  
Vincenzo Naso

The bioceanic Amazon corridor represents a development opportunity for the Peruvian and Brazilian economy but this economic evolution is linked to the production and use of energy. Energy is a conditioning factor of economic growth and development and the application of conventional (or alternative) energy systems is strongly influenced by both quantitative and qualitative trends in energy consumption. Decentralized production of energy is necessary, and new decentralized energy technologies based on renewable sources could provide additional income opportunities, decreasing environmental risk along Amazon corridor, and providing clean fuel and electricity. It’s necessary that the bioceanic Amazon corridors call for the application of energy systems related to the renewable local resources in coast, mountain and forest. In Peru, firewood is the principal energy source for cooking and heating and this fuel is used in inefficient combustion system that increases the impact on ecosystems. Typical Peruvian biomass source are wood, agricultural residues, agro industrial waste and municipal solid waste. The most obvious it’s the availability of agricultural and agro industrial residues that could be used as a biomass fuel source in modern plant to produce electricity. Today, there is a growing interest for ethanol production from sugar cane, but it couldn’t be applied along bioceanic corridors; therefore it is necessary to integrate other renewable sources.

Proceedings ◽  
2020 ◽  
Vol 58 (1) ◽  
pp. 7
Author(s):  
Beaud Muriel ◽  
Amarasinghage Tharindu Dasun Perera ◽  
Cai Hanmin ◽  
Andrew Bollinger ◽  
Kristina Orehounig

The building sector plays a vital role in Switzerland’s climate policy. In order to support the energy transition in the building sector, Rolle, a suburban area located along the shore of Lake Geneva is considered in this study to understand the promising future scenarios for integration of renewable energy technologies. The area is clustered into 12 clusters and a distributed energy system is designed for each cluster. Subsequently, three energy systems with contrasting densities are taken for further comparison to understand the impact of urban density on the design of the distributed energy system. The study reveals that urban density will influence the peak as well as the annual energy demand of the energy hubs. The study reveals that the energy technologies used in the energy hubs are strongly influenced by the capacity of the system (peak and annual energy demand). Energy systems with higher capacities are less sensitive to the market changes when compared to the systems with lower capacities (leading to sparse suburban areas).


2019 ◽  
Vol 114 ◽  
pp. 05001 ◽  
Author(s):  
Oleg V. Marchenko ◽  
Sergei V. Solomin

A review of the methods and models used at the ESI SB RAS to assess the effectiveness of renewable energy sources (RES) was carried out. Criteria were formulated and calculation formulas were given for a preliminary assessment of the competitiveness of renewable energy sources as compared to alternative energy supply options. A mathematical model of the world energy system was considered, where renewable energy sources were described by averaged indicators. The model allows for different scenarios of external conditions to explore the prospects for the development of energy technologies, including renewable energy sources. For the analysis of autonomous energy systems with RES, a simulation model was developed so as to treat the processes of production, consumption, and energy storage in their dynamics. The optimization version of the mathematical model eliminates the need for a pre-assignment of the energy flow control algorithm. In this case, it is possible to study systems with the simultaneous presence of several units of energy storage of various types. For the study of renewable energy sources under market conditions, a model was developed so as to take into account the presence of various decision-making hubs, as well as the impact of governmental regulatory bodies in the market. It was shown that the most efficient mechanism for encouraging the development of renewable energy sources is the creation of a market for "green certificates", with the least efficient renewable energy sources to be subsidized.


2021 ◽  
Author(s):  
Samuel Robinson ◽  
Alona Armstrong

<p>Energy systems around the world are rapidly transitioning towards decentralised and digitalised systems as countries aim to decarbonise their economies. However, broader environmental effects of the upscaling of these smart local energy systems (SLES) beyond reducing carbon emissions remain unclear. Land-use change associated with increased deployment of renewables, new infrastructures required for energy distribution and storage, and resource extraction for emerging energy technologies may have significant environmental impacts, including consequences for ecosystems within and beyond energy system project localities. This has major implications for biodiversity, natural capital stocks and provision of ecosystem services, the importance of which are increasingly recognised in development policy at local to international scales. This study assessed current understanding of the broader environmental impacts and potential co-benefits of SLES through a global Rapid Evidence Assessment of peer-reviewed academic literature, with a critical evaluation and synthesis of existing knowledge of effects of SLES on biodiversity, natural capital and ecosystem services. There was a striking overall lack of evidence of the environmental impacts of SLES. The vast majority of studies identified considered only energy technology CO<sub>2</sub> emissions through simulation modelling; almost no studies made explicit reference to effects on ecosystems. This highlights an urgent need to improve whole system understanding of environmental impacts of SLES, crucial to avoid unintended ecosystem degradation as a result of climate change mitigation. This will also help to identify potential techno-ecological synergies and opportunities for improvement of degraded ecosystems alongside reaching decarbonisation goals.</p>


2020 ◽  
Vol 4 (1) ◽  
pp. 71-106
Author(s):  
Martin Boucher

 Aim: This study examines the impact of governance on decentralized energy transitions. Knowledge of how particular jurisdictions and their governance arrangements influence these transitions can help strengthen and contextualize divergent trajectories of decentralized energy transitions and—most importantly—reveal the role of geographical context in policy change. Design: This research gap is addressed in this paper by comparing the uptake of decentralized energy transitions in three cities in three different countries—Luleå (Sweden), Saskatoon (Canada), and Anchorage (United States). The jurisdictions in each city has unique governance contexts pertaining to electric utilities, regulations, public policy, and public acceptance.  By comparing these transitions, this study highlights the governance considerations for decentralized energy transitions and asks how does governance impact decentralized energy transitions in cities? To answer this question, actors within various public, private, and sectoral capacities were interviewed to provide their insights on decentralized energy transitions in each jurisdiction. Conclusion: I present five governance dimensions that impact decentralized energy transitions and explain how these factors can be included to provide a more contextual understanding of patterns of decentralized energy transitions in cities.  Originality: Much of the literature on decentralized energy and cities has focused on project and sectoral level analysis and hasn’t considered the holistic nature of the energy system transition. A particular gap that would help inform a broader understanding is the jurisdictional governance impacts of decentralization energy transitions. Implications of the Research: In practical terms, the results could be used to inform inter-jurisdictional comparisons of decentralization energy projects. Limitations of the Research: Given that there were three case studies, it is not possible to make generalizable claims from the results.  


Author(s):  
Dilara Gulcin Caglayan ◽  
Heidi Ursula Heinrichs ◽  
Detlef Stolten ◽  
Martin Robinius

The transition towards a renewable energy system is essential in order to reduce greenhouse gas emissions. The increase in the share of variable renewable energy sources (VRES), which mainly comprise wind and solar energy, necessitates storage technologies by which the intermittency of VRES can be compensated for. Although hydrogen has been envisioned to play a significant role as a promising alternative energy carrier in a future European VRES-based energy concept, the optimal design of this system remains uncertain. In this analysis, a hydrogen infrastructure is posited that would meet the electricity and hydrogen demand for a 100% renewable energy-based European energy system in the context of 2050. The overall system design is optimized by minimizing the total annual cost. Onshore and offshore wind energy, open-field photovoltaics (PV), rooftop PV and hydro energy, as well as biomass, are the technologies employed for electricity generation. The electricity generated is then either transmitted through the electrical grid or converted into hydrogen by means of electrolyzers and then distributed through hydrogen pipelines. Battery, hydrogen vessels and salt caverns are considered as potential storage technologies. In the case of a lull, stored hydrogen can be re-electrified to generate electricity to meet demand during that time period. For each location, eligible technologies are introduced, as well as their maximum capacity and hourly demand profiles, in order to build the optimization model. In addition, a generation time series for VRES has been exogenously derived for the model. The generation profiles of wind energy have been investigated in detail by considering future turbine designs with high spatial resolution. In terms of salt cavern storage, the technical potential for hydrogen storage is defined in the system as the maximum allowable capacity per region. Whether or not a technology is installed in a region, the hourly operation of these technologies, as well as the cost of each technology, are obtained within the optimization results. It is revealed that a 100 percent renewable energy system is feasible and would meet both electricity demand and hydrogen demand in Europe.


Energies ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4753 ◽  
Author(s):  
Njomza Ibrahimi ◽  
Alemayehu Gebremedhin ◽  
Alketa Sahiti

In today’s energy system, the diffusion of renewable-based technologies is accelerating rapidly. Development of mechanisms that support the large-scale deployment of renewables towards global warming and climate change mitigation continues to remain an issue of utter importance. The most important challenges the energy system of Kosovo faces today is the difficulty to meet all the demand for electricity, low operating efficiency and high release of greenhouse gas emissions, but specifically a large source of carbon dioxide (CO2). Consequently, this influences not only the stability of the system but the society as a whole. This paper addresses several possibilities for designing an adaptable energy system in Kosovo with the ability to balance electricity supply and demand which will meet the requirements for a more efficient, reliable and secure system. A new way of energy generating through integration of new renewable and non-renewable technologies is developed using the EnergyPLAN model. The system is based on available technologies: existing hydro, wind, photovoltaic (PV), combined heat and power (CHP) and new solar thermal, heat pumps and biomass. The baseline scenario 2015 was expanded by four additional scenarios, two for the year 2030 and two for the year 2050. The contribution of renewable sources in the primary energy supply (PES) in the performed scenarios was 14.8%, 34.1%, 38.4%, 69.7% and 68.3% respectively. Further, a very important component of this paper is the investigation of integrating carbon capture and sequestration (CCS) technology in the coal-based power plant as part of the analysis in the second scenario for 2050. The shift to zero-carbon energy system in Kosovo requires additional research and assessment in order to identify the untapped potential of renewable sources. However, from the results obtained it can be concluded that the goal of a secure, competitive and sustainable energy system in Kosovo state which will meet its long-term energy needs can be certainly achieved.


2019 ◽  
Vol 51 (2) ◽  
pp. 114-140 ◽  
Author(s):  
Juliette N. Rooney-Varga ◽  
Florian Kapmeier ◽  
John D. Sterman ◽  
Andrew P. Jones ◽  
Michele Putko ◽  
...  

Background. We describe and provide an initial evaluation of the Climate Action Simulation, a simulation-based role-playing game that enables participants to learn for themselves about the response of the climate-energy system to potential policies and actions. Participants gain an understanding of the scale and urgency of climate action, the impact of different policies and actions, and the dynamics and interactions of different policy choices. Intervention. The Climate Action Simulation combines an interactive computer model, En-ROADS, with a role-play in which participants make decisions about energy and climate policy. They learn about the dynamics of the climate and energy systems as they discover how En-ROADS responds to their own climate-energy decisions. Methods. We evaluated learning outcomes from the Climate Action Simulation using pre- and post-simulation surveys as well as a focus group. Results. Analysis of survey results showed that the Climate Action Simulation increases participants’ knowledge about the scale of emissions reductions and policies and actions needed to address climate change. Their personal and emotional engagement with climate change also grew. Focus group participants were overwhelmingly positive about the Climate Action Simulation, saying it left them feeling empowered to make a positive difference in addressing the climate challenge. Discussion and Conclusions. Initial evaluation results indicate that the Climate Action Simulation offers an engaging experience that delivers gains in knowledge about the climate and energy systems, while also opening affective and social learning pathways.


Author(s):  
Stefan Wischhusen ◽  
Gerhard Schmitz

In this paper, criteria which indicate the usage of transient models and dynamic simulation environments for such energy systems are presented. A complex energy system for heating and cooling of industrial facilities and industrial processes is presented as a reference model. A model of a hot water storage tank is presented, which is optimized for the simulation in whole years, in which a very accurate transient response at much quicker simulation times compared to conventional geometric models can be delivered. The model was validated with measurement data from a large cogeneration plant. In addition, the economical impact of system simulation is emphasized on by an optimization study carried out on a large industrial system. Furthermore, the impact of a transient system model is compared to that of a steady state approach of the same system.


Energies ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 407 ◽  
Author(s):  
Dominik Dominković ◽  
Goran Krajačić

The energy transition of future urban energy systems is still the subject of an ongoing debate. District energy supply can play an important role in reducing the total socio-economic costs of energy systems and primary energy supply. Although lots of research was done on integrated modelling including district heating, there is a lack of research on integrated energy modelling including district cooling. This paper addressed the latter gap using linear continuous optimization model of the whole energy system, using Singapore for a case study. Results showed that optimal district cooling share was 30% of the total cooling energy demand for both developed scenarios, one that took into account spatial constraints for photovoltaics installation and the other one that did not. In the scenario that took into account existing spatial constraints for installations, optimal capacities of methane and thermal energy storage types were much larger than capacities of grid battery storage, battery storage in vehicles and hydrogen storage. Grid battery storage correlated with photovoltaics capacity installed in the energy system. Furthermore, it was shown that successful representation of long-term storage solutions in urban energy models reduced the total socio-economic costs of the energy system for 4.1%.


Sign in / Sign up

Export Citation Format

Share Document