district energy
Recently Published Documents


TOTAL DOCUMENTS

289
(FIVE YEARS 108)

H-INDEX

26
(FIVE YEARS 7)

Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 554
Author(s):  
Ardak Akhatova ◽  
Lukas Kranzl ◽  
Fabian Schipfer ◽  
Charitha Buddhika Heendeniya

There is an increased interest in the district-scale energy transition within interdisciplinary research community. Agent-based modelling presents a suitable approach to address variety of questions related to policies, technologies, processes, and the different stakeholder roles that can foster such transition. However, it is a largely complex and versatile methodology which hinders its broader uptake by researchers as well as improved results. This state-of-the-art review focuses on the application of agent-based modelling for exploring policy interventions that facilitate the decarbonisation (i.e., energy transition) of districts and neighbourhoods while considering stakeholders’ social characteristics and interactions. We systematically select and analyse peer-reviewed literature and discuss the key modelling aspects, such as model purpose, agents and decision-making logic, spatial and temporal aspects, and empirical grounding. The analysis reveals that the most established agent-based models’ focus on innovation diffusion (e.g., adoption of solar panels) and dissemination of energy-saving behaviour among a group of buildings in urban areas. We see a considerable gap in exploring the decisions and interactions of agents other than residential households, such as commercial and even industrial energy consumers (and prosumers). Moreover, measures such as building retrofits and conversion to district energy systems involve many stakeholders and complex interactions between them that up to now have hardly been represented in the agent-based modelling environment. Hence, this work contributes to better understanding and further improving the research on transition towards decarbonised society.


Author(s):  
Ardak Akhatova ◽  
Lukas Kranzl ◽  
Fabian Schipfer ◽  
Charitha Buddhika Heendeniya

There is an increased interest in the district-scale energy transition within interdisciplinary research community. Agent-based modelling presents a suitable approach to address variety of questions related to policies, technologies, processes, and the different stakeholder roles that can foster such transition. This state-of-the-art review focuses on the application of agent-based modelling for exploring policy interventions that facilitate the decarbonisation (i.e., energy transition) of districts and neighbourhoods while considering stakeholders’ social characteristics and interactions. We systematically select and analyse peer-reviewed literature and discuss the key modelling aspects, such as model purpose, agents and decision-making logic, spatial and temporal aspects, and empirical grounding. The analysis reveals that the most established agent-based models’ focus on innovation diffusion (e.g., adoption of solar panels) and dissemination of energy-saving behaviour among a group of buildings in urban areas. We see a considerable gap in exploring the decisions and interactions of agents other than residential households, such as commercial and even industrial energy consumers (and prosumers). Moreover, measures such as building retrofits and conversion to district energy systems involve many stakeholders and complex interactions between them that up to now have hardly been represented in the agent-based modelling environment.


2021 ◽  
Vol 304 ◽  
pp. 117642
Author(s):  
Giuseppe Pinto ◽  
Davide Deltetto ◽  
Alfonso Capozzoli

Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7257
Author(s):  
Adrian Grimm ◽  
Patrik Schönfeldt ◽  
Herena Torio ◽  
Peter Klement ◽  
Benedikt Hanke ◽  
...  

We present a method to turn the results of model-based optimisations into resilient and comprehensible control strategies. Our approach is to define priority lists for all available technologies in a district energy system. Using linear discriminant analysis and the results of the optimisations, these are then assigned to discrete time steps using a set of possible steering parameters. In contrast to the model-based optimisations, the deduced control strategies do not need predictions or even perfect foresight but solely rely on data about the present. The case study using priority lists presents results in terms of emissions and prices that are only about 5% off the linear optimum. Considering that the priority lists only need information about the present, the results of the control strategies obtained using the proposed method can be considered competitive.


2021 ◽  
Vol 2042 (1) ◽  
pp. 012078
Author(s):  
Alessandro Maccarini ◽  
Enrico Prataviera ◽  
Angelo Zarrella ◽  
Alireza Afshari

Abstract Urban Building Energy Simulation (UBES) is an efficient tool to investigate and subsequently reduce energy demand of urban areas. Nevertheless, UBES has always been a challenging task due the trade-off between accuracy, computational speed and parametrization. In order to reduce these computation and parameterization requirements, model reduction and simplification methods aim at representing building behaviour with an acceptable accuracy, but using less equations and input parameters. This paper presents the development and validation results of a simplified urban simulation model based on the ISO 13790 Standard and written in the Modelica language. The model describes the thermo-physical behaviour of buildings by means of an equivalent electric network consisting of five resistances and one capacitance. The validation of the model was carried out using four cases of the ANSI/ASHRAE Standard 140. In general, the model shows good accuracy and the validation provided values within the acceptable ranges.


2021 ◽  
Vol 9 ◽  
Author(s):  
Luise Middelhauve ◽  
Luc Girardin ◽  
Francesco Baldi ◽  
François Maréchal

The expected increase of the penetration of distributed renewable energy technologies into the electricity grid is expected to lead to major challenges. As a main stakeholder, authorities often lack the appropriate tools to frame and encourage the transition and monitor the impact of energy transition policies. This paper aims at combining relatively detailed modeling of the PV generation potential on the building’s envelope while retaining the energy system optimization approach. The problem is addressed as a multiobjective, mixed-integer linear programming problem. Compared to the existing literature in the field, the proposed approach combines advanced modeling of the energy generation potential from PV panels with detailed representation of the district energy systems, thus allowing an accurate representation of the interaction between the energy generation from PV and the rest of the system. The proposed approach was applied to a typical residential district in Switzerland. The results of the application of the proposed method show that the district can achieve carbon neutrality based on PV energy alone, but this requires covering all the available district’s rooftops and part of the district’s facades. Whereas facades are generally disregarded due to their lower generation potential, the results also allow concluding that facade PV can be economically convenient for a wide range of electricity prices, including those currently used by the Swiss grid operators. Achieving self-sufficiency at district scale is challenging: it can be achieved by covering approximately 42–100% of the available surface when the round-trip efficiency decreases from 100 to 50%. The results underline the importance of storage for achieving self-sufficiency: even with 100%, round-trip efficiency for the storage, very large capacities are required. However, energy demand reduction through renovation would allow reaching self-sufficiency with half of the PV and storage capacity required.


Sign in / Sign up

Export Citation Format

Share Document