Design and Validation of a Compressor for a New Generation of Heavy-Duty Gas Turbines

Author(s):  
F. Eulitz ◽  
B. Kuesters ◽  
F. Mildner ◽  
M. Mittelbach ◽  
A. Peters ◽  
...  

Siemens H-Class. Siemens has developed the world-largest H-class Gas Turbine (SGT™) that sets unparalleled standards for high efficiency, low life cycle costs and operating flexibility. With a power output of 340+ MW, the SGT5–8000H gas turbine will be the primary driver of the new Siemens Combined Cycle Power Plant (SCC™) for the 50 Hz market, the SCC5–8000H, with an output of 530+ MW at more than 60% efficiency. After extensive lab and component testing, the prototype has been shipped to the power plant for an 18-month validation phase. In this paper, the compressor technology, which was developed for the Siemens H-class, is presented through its development and validation phases. Reliability and Availability. The compressor has been extensively validated in the Siemens Berlin Test Facility during consecutive engine test programs. All key parameters, such as mass flow, operating range, efficiency and aero mechanical behavior meet or exceed expectations. Six-sigma methodology has been exploited throughout the development to implement the technologies into a robust design. Efficiency. The new compressor technology applies the Siemens advanced aerodynamics design methodology based on the high performance airfoil (HPA) systematic which leads to broader operation range and higher efficiency than a standard controlled diffusion airfoil (CDA) design. Operational Flexibility. The compressor features an IGV and three rows of variable guide vanes for improved turndown capability and improved part load efficiency. Serviceability. The design has been optimized for serviceability and less complexity. Following the Siemens tradition, all compressor rotating blades can be replaced without rotor lift or destacking. Evolutionary Design Innovation. The compressor design incorporates the best features and experience from the operating fleets and technology innovation prepared through detailed research, analysis and lab testing in the past decade. The design tools are based on best practices from former Siemens KWU and Westinghouse with enhancements allowing for routine front-to-back compressor 3D CFD multistage analysis, unsteady blade row interaction, forced response analyses and aero-elastic analysis.

Author(s):  
Stéphanie Hoffmann ◽  
Michael Bartlett ◽  
Matthias Finkenrath ◽  
Andrei Evulet ◽  
Tord Peter Ursin

This paper presents the results of an evaluation of advanced combined cycle gas turbine plants with precombustion capture of CO2 from natural gas. In particular, the designs are carried out with the objectives of high efficiency, low capital cost, and low emissions of carbon dioxide to the atmosphere. The novel cycles introduced in this paper are comprised of a high-pressure syngas generation island, in which an air-blown partial oxidation reformer is used to generate syngas from natural gas, and a power island, in which a CO2-lean syngas is burnt in a large frame machine. In order to reduce the efficiency penalty of natural gas reforming, a significant effort is spent evaluating and optimizing alternatives to recover the heat released during the process. CO2 is removed from the shifted syngas using either CO2 absorbing solvents or a CO2 membrane. CO2 separation membranes, in particular, have the potential for considerable cost or energy savings compared with conventional solvent-based separation and benefit from the high-pressure level of the syngas generation island. A feasibility analysis and a cycle performance evaluation are carried out for large frame gas turbines such as the 9FB. Both short-term and long-term solutions have been investigated. An analysis of the cost of CO2 avoided is presented, including an evaluation of the cost of modifying the combined cycle due to CO2 separation. The paper describes a power plant reaching the performance targets of 50% net cycle efficiency and 80% CO2 capture, as well as the cost target of 30$ per ton of CO2 avoided (2006 Q1 basis). This paper indicates a development path to this power plant that minimizes technical risks by incremental implementation of new technology.


Author(s):  
Ste´phanie Hoffmann ◽  
Michael Bartlett ◽  
Matthias Finkenrath ◽  
Andrei Evulet ◽  
Tord Peter Ursin

This paper presents the results of an evaluation of advanced combined cycle gas turbine plants with pre-combustion capture of CO2 from natural gas. In particular, the designs are carried out with the objectives of high efficiency, low capital cost and low emissions of carbon dioxide to the atmosphere. The novel cycles introduced in this paper are comprised of a high-pressure syngas generation island, in which an air-blown POX reformer is used to generate syngas from natural gas, and a power island, in which a CO2-lean syngas is burnt in a large frame machine. In order to reduce the efficiency penalty of natural gas reforming, a significant effort is spent evaluating and optimizing alternatives to recover the heat released during the process. CO2 is removed from the shifted syngas using either CO2 absorbing solvents or a CO2 membrane. CO2 separation membranes, in particular, have the potential for considerable cost or energy savings compared to conventional solvent-based separation and benefit from the high pressure level of the syngas generation island. A feasibility analysis and a cycle performance evaluation are carried out for large frame gas turbines such as the 9FB. Both short term and long term solutions have been investigated. An analysis of the cost of CO2 avoided is presented, including an evaluation of the cost of modifying the combined cycle due to CO2 separation. The paper describes a power plant reaching the performance targets of 50% net cycle efficiency and 80% CO2 capture, as well as the cost target of 30$ per ton of CO2 avoided. This paper indicates a development path to this power plant that minimizes technical risks by incremental implementation of new technology.


Author(s):  
Christian Vandervort

The power generation industry is facing unprecedented challenges. High fuel costs combined with an increased penetration of renewable power has resulted in greater demand for high efficiency and operational flexibility. Imperative for a reduced carbon footprint places an even higher premium on efficiency. Power producers are seeking highly efficient, reliable, and operationally flexible solutions that provide long-term profitability in a volatile environment. New generation must also be cost-effective to ensure affordability for both domestic and industrial consumers. Gas turbine combined cycle power plants provide reliable, dispatch-able generation with low cost of electricity, reduced environmental impact, and improved flexibility. GE’s air-cooled, H-class gas turbines (7/9HA) are engineered to achieve greater than 63% net, combined cycle efficiency while delivering operational flexibility through deep, emission-compliant turndown and high ramp rates. The largest of these gas turbines, the 9HA.02, exceeds 64% combined cycle efficiency (net, ISO) in a 1 × 1, single-shaft configuration. In parallel, the power plant has been configured for rapid construction and commissioning enabling timely revenue generation for power plant developers and owners. The HA platform is enabled by 1) use of a simple air-cooling system for the turbine section that does not require external heat exchange and the associated cost and complexity, and 2) use of well-known materials and coatings with substantial operating experience at high firing temperatures. Key technology improvements for the HA’s include advanced cooling and sealing, utilization of unsteady aerodynamic methodologies, axially staged combustion and next generation thermal barrier coating (TBC). Validation of the architecture and technology insertion is performed in a dedicated test facility over the full operating range. As of February 2018, a total of 18 HA power plants have achieved COD (Commercial Operation). This paper will address three topics relating to the HA platform: 1) gas turbine product technology, 2) gas turbine validation and 3) integrated power plant commissioning and operating experience.


Author(s):  
A.A. Filimonova ◽  
◽  
N.D. Chichirova ◽  
A.A. Chichirov ◽  
A.A. Batalova ◽  
...  

The article provides an overview of modern high-performance combined-cycle plants and gas turbine plants with waste heat boilers. The forecast for the introduction of gas turbine equipment at TPPs in the world and in Russia is presented. The classification of gas turbines according to the degree of energy efficiency and operational characteristics is given. Waste heat boilers are characterized in terms of design and associated performance and efficiency. To achieve high operating parameters of gas turbine and boiler equipment, it is necessary to use, among other things, modern water treatment equipment. The article discusses modern effective technologies, the leading place among which is occupied by membrane, and especially baromembrane methods of preparing feed water-waste heat boilers. At the same time, the ion exchange technology remains one of the most demanded at TPPs in the Russian Federation.


2011 ◽  
Vol 133 (05) ◽  
pp. 30-33 ◽  
Author(s):  
Lee S. Langston

This article explores the increasing use of natural gas in different turbine industries and in turn creating an efficient electrical system. All indications are that the aviation market will be good for gas turbine production as airlines and the military replace old equipment and expanding economies such as China and India increase their air travel. Gas turbines now account for some 22% of the electricity produced in the United States and 46% of the electricity generated in the United Kingdom. In spite of this market share, electrical power gas turbines have kept a much lower profile than competing technologies, such as coal-fired thermal plants and nuclear power. Gas turbines are also the primary device behind the modern combined power plant, about the most fuel-efficient technology we have. Mitsubishi Heavy Industries is developing a new J series gas turbine for the combined cycle power plant market that could achieve thermal efficiencies of 61%. The researchers believe that if wind turbines and gas turbines team up, they can create a cleaner, more efficient electrical power system.


Author(s):  
Edgar Vicente Torres González ◽  
Raúl Lugo Leyte ◽  
Martín Salazar Pereyra ◽  
Helen Denise Lugo Méndez ◽  
Miguel Toledo Velázquez ◽  
...  

In this paper is carried out a comparison between a gas turbine power plant and a combined cycle power plant through exergetic and environmental indices in order to determine performance and sustainability aspects of a gas turbine and combined cycle plant. First of all, an exergetic analysis of the gas turbine and the combined is carried out then the exergetic and environmental indices are calculated for the gas turbine (case A) and the combined cycle (case B). The exergetic indices are exergetic efficiency, waste exergy ratio, exergy destruction factor, recoverable exergy ratio, environmental effect factor and exergetic sustainability. Besides, the environmental indices are global warming, smog formation and acid rain indices. In the case A, the two gas turbines generate 278.4 MW; whereas 415.19 MW of electricity power is generated by the combined cycle (case B). The results show that exergetic sustainability index for cases A and B are 0.02888 and 0.1058 respectively. The steam turbine cycle improves the overall efficiency, as well as, the reviewed exergetic indexes. Besides, the environmental indices of the gas turbines (case A) are lower than the combined cycle environmental indices (case B), since the combustion gases are only generated in the combustion chamber.


Author(s):  
R. Chacartegui ◽  
D. Sa´nchez ◽  
F. Jime´nez-Espadafor ◽  
A. Mun˜oz ◽  
T. Sa´nchez

The development of high efficiency solar power plants based on gas turbine technology presents two problems, both of them directly associated with the solar power plant receiver design and the power plant size: lower turbine intake temperature and higher pressure drops in heat exchangers than in a conventional gas turbine. To partially solve these problems, different configurations of combined cycles composed of a closed cycle carbon dioxide gas turbine as topping cycle have been analyzed. The main advantage of the Brayton carbon dioxide cycle is its high net shaft work to expansion work ratio, in the range of 0.7–0.85 at supercritical compressor intake pressures, which is very close to that of the Rankine cycle. This feature will reduce the negative effects of pressure drops and will be also very interesting for cycles with moderate turbine inlet temperature (800–1000 K). Intercooling and reheat options are also considered. Furthermore, different working fluids have been analyzed for the bottoming cycle, seeking the best performance of the combined cycle in the ranges of temperatures considered.


Author(s):  
Weimar Mantilla ◽  
José García ◽  
Rafael Guédez ◽  
Alessandro Sorce

Abstract Under new scenarios with high shares of variable renewable electricity, combined cycle gas turbines (CCGT) are required to improve their flexibility, in terms of ramping capabilities and part-load efficiency, to help balance the power system. Simultaneously, liberalization of electricity markets and the complexity of its hourly price dynamics are affecting the CCGT profitability, leading the need for optimizing its operation. Among the different possibilities to enhance the power plant performance, an inlet air conditioning unit (ICU) offers the benefit of power augmentation and “minimum environmental load” (MEL) reduction by controlling the gas turbine inlet temperature using cold thermal energy storage and a heat pump. Consequently, an evaluation of a CCGT integrated with this inlet conditioning unit including a day-ahead optimized operation strategy was developed in this study. To establish the hourly dispatch of the power plant and the operation mode of the inlet conditioning unit to either cool down or heat up the gas turbine inlet air, a mixed-integer linear optimization (MILP) was formulated using MATLAB, aiming to maximize the operational profit of the plant within a 24-hours horizon. To assess the impact of the proposed unit operating under this dispatch strategy, historical data of electricity and natural gas prices, as well as meteorological data and CO2 emission allowances price, have been used to perform annual simulations of a reference power plant located in Turin, Italy. Furthermore, different equipment capacities and parameters have been investigated to identify trends of the power plant performance. Lastly, a sensitivity analysis on market conditions to test the control strategy response was also considered. Results indicate that the inlet conditioning unit, together with the dispatch optimization, increases the power plant’s operational profit by achieving a wider operational range, particularly important during peak and off-peak periods. For the specific case study, it is estimated that the net present value of the CCGT integrated with the ICU is 0.5% higher than the power plant without the unit. In terms of technical performance, results show that the unit reduces the minimum environmental load by approximately 1.34% and can increase the net power output by 0.17% annually.


2001 ◽  
Vol 123 (2) ◽  
pp. 160-163 ◽  
Author(s):  
Rainer Tamme ◽  
Reiner Buck ◽  
Michael Epstein ◽  
Uriyel Fisher ◽  
Chemi Sugarmen

This paper presents a novel process comprising solar upgrading of hydrocarbons by steam reforming in solar specific receiver-reactors and utilizing the upgraded, hydrogen-rich fuel in high efficiency conversion systems, such as gas turbines or fuel cells. In comparison to conventionally heated processes about 30% of fuel can be saved with respect to the same specific output. Such processes can be used in small scale as a stand-alone system for off-grid markets as well as in large scale to be operated in connection with conventional combined-cycle plants. The complete reforming process will be demonstrated in the SOLASYS project, supported by the European Commission in the JOULE/THERMIE framework. The project has been started in June 1998. The SOLASYS plant is designed for 300 kWel output, it consists of the solar field, the solar reformer and a gas turbine, adjusted to operate with the reformed gas. The SOLASYS plant will be operated at the experimental solar test facility of the Weizmann Institute of Science in Israel. Start-up of the pilot plant is scheduled in April 2001. The midterm goal is to replace fossil fuels by renewable or non-conventional feedstock in order to increase the share of renewable energy and to establish processes with only minor or no CO2 emission. Examples might be upgrading of bio-gas from municipal solid waste as well as upgrading of weak gas resources.


Sign in / Sign up

Export Citation Format

Share Document