Gas Turbine Part Load Performance Testing: Comparison of Test Methodologies

Author(s):  
Thomas P. Schmitt ◽  
Herve Clement

Current trends in usage patterns of gas turbines in combined cycle applications indicate a substantial proportion of part load operation. Commensurate with the change in operating profile, there has been an increase in the propensity for part load performance guarantees. When a project is structured such that gas turbines are procured as equipment-only from the manufacturer, there is occasionally a gas turbine part load performance guarantee that coincides with the net plant combined cycle part load performance guarantee. There are several methods by which to accomplish part load gas turbine performance testing. One of the more common methods is to operate the gas turbine at the specified load value and construct correction curves at constant load. Another common method is to operate the gas turbine at a specified load percentage and construct correction curves at constant percent load. A third method is to operate the gas turbine at a selected load level that corresponds to a predetermined compressor inlet guide vane (IGV) angle. The IGV angle for this third method is the IGV angle that is needed to achieve the guaranteed load at the guaranteed boundary conditions. The third method requires correction curves constructed at constant IGV, just like base load correction curves. Each method of test and correction embodies a particular set of advantages and disadvantages. The results of an exploration into the advantages and disadvantages of the various performance testing and correction methods for part load performance testing of gas turbines are presented. Particular attention is given to estimates of the relative uncertainty for each method.

1983 ◽  
Vol 105 (1) ◽  
pp. 72-79 ◽  
Author(s):  
W. I. Rowen ◽  
R. L. Van Housen

Gas turbines furnished with heat recovery equipment generally have maximum cycle efficiency when the gas turbine is operated at its ambient capability. At reduced gas turbine output the cycle performance can fall off rapidly as gas turbine exhaust temperature drops, which reduces the heat recovery equipment performance. This paper reviews the economic gains which can be realized through use of several control modes which are currently available to optimize the cycle efficiency at part load operation. These include variable inlet guide vane (VIGV) control for single-shaft units, and combined VIGV and variable high-pressure set (compressor) speed control for two-shaft units. In addition to the normal control optimization mode to maintain the maximum exhaust temperature, a new control mode is discussed which allows airflow to be modulated in response to a process signal while at constant part load. This control feature is desirable for gas turbines which supply preheated combustion air to fired process heaters.


Author(s):  
W. I. Rowen ◽  
R. L. Van Housen

Gas turbines furnished with heat recovery equipment generally have maximum cycle efficiency when the gas turbine is operated at its ambient capability. At reduced gas turbine output the cycle performance can fall off rapidly as gas turbine exhaust temperature drops, which reduces the heat recovery equipment performance. This paper reviews the economic gains which can be realized through use of several control modes which are currently available to optimize the cycle efficiency at part load operation. These include variable inlet guide vane (VIGV) control for single-shaft units, and combined VIGV and variable high pressure set (compressor) speed control for two-shaft units. In addition to the normal control optimization mode to maintain the maximum exhaust temperature, a new control mode is discussed which allows airflow to be modulated in response to a process signal while at constant part load. This control feature is desirable for gas turbines which supply preheated combustion air to fired process heaters.


2021 ◽  
Author(s):  
Silvia Ravelli

Abstract This study takes inspiration from a previous work focused on the simulations of the Willem-Alexander Centrale (WAC) power plant located in Buggenum (the Netherlands), based on integrated gasification combined cycle (IGCC) technology, under both design and off-design conditions. These latter included co-gasification of coal and biomass, in proportions of 30:70, in three different fuel mixtures. Any drop in the energy content of the coal/biomass blend, with respect to 100% coal, translated into a reduction in gas turbine (GT) firing temperature and load, according to the guidelines of WAC testing. Since the model was found to be accurate in comparison with operational data, here attention is drawn to the GT behavior. Hence part load strategies, such as fuel-only turbine inlet temperature (TIT) control and inlet guide vane (IGV) control, were investigated with the aim of maximizing the net electric efficiency (ηel) of the whole plant. This was done for different GT models from leading manufactures on a comparable size, in the range between 190–200 MW. The influence of fuel quality on overall ηel was discussed for three binary blends, over a wide range of lower heating value (LHV), while ensuring a concentration of H2 in the syngas below the limit of 30 vol%. IGV control was found to deliver the highest IGCC ηel combined with the lowest CO2 emission intensity, when compared not only to TIT control but also to turbine exhaust temperature control, which matches the spec for the selected GT engine. Thermoflex® was used to compute mass and energy balances in a steady environment thus neglecting dynamic aspects.


Author(s):  
Kamal Abudu ◽  
Uyioghosa Igie ◽  
Orlando Minervino ◽  
Richard Hamilton

With the transition to more use of renewable forms of energy in Europe, grid instability that is linked to the intermittency in power generation is a concern, and thus, the fast response of on-demand power systems like gas turbines has become more important. This study focuses on the injection of compressed air to facilitate the improvement in the ramp-up rate of a heavy-duty gas turbine. The steady-state analysis of compressed airflow injection at part-load and full load indicates power augmentation of up to 25%, without infringing on the surge margin. The surge margin is also seen to be more limiting at part-load with maximum closing of the variable inlet guide vane than at high load with a maximum opening. Nevertheless, the percentage increase in the thermal efficiency of the former is slightly greater for the same amount of airflow injection. Part-load operations above 75% of power show higher thermal efficiencies with airflow injection when compared with other load variation approaches. The quasi-dynamic simulations performed using constant mass flow method show that the heavy-duty gas turbine ramp-up rate can be improved by 10% on average, for every 2% of compressor outlet airflow injected during ramp-up irrespective of the starting load. It also shows that the limitation of the ramp-up rate improvement is dominated by the rear stages and at lower variable inlet guide vane openings. The turbine entry temperature is found to be another restrictive factor at a high injection rate of up to 10%. However, the 2% injection rate is shown to be the safest, also offering considerable performance enhancements. It was also found that the ramp-up rate with air injection from the minimum environmental load to full load amounted to lower total fuel consumption than the design case.


Author(s):  
Tae Won Song ◽  
Jeong L. Sohn ◽  
Tong Seop Kim ◽  
Sung Tack Ro

To investigate the possible applications of the SOFC/MGT hybrid system to large electric power generations, a study for the kW-class hybrid power system conducted in our group is extended to the MW-class hybrid system in this study. Because of the matured technology of the gas turbine and commercial availability in the market, it is reasonable to construct a hybrid system with the selection of a gas turbine as an off-the-shelf item. For this purpose, the performance analysis is conducted to find out the optimal power size of the hybrid system based on a commercially available gas turbine. The optimal power size has to be selected by considering specifications of a selected gas turbine which limit the performance of the hybrid system. Also, the cell temperature of the SOFC is another limiting parameter to be considered in the selection of the optimal power size. Because of different system configuration of the hybrid system, the control strategies for the part-load operation of the MW-class hybrid system are quite different from the kW-class case. Also, it is necessary to consider that the control of supplied air to the MW-class gas turbine is typically done by the variable inlet guide vane located in front of the compressor inlet, instead of the control of variable rotational speed of the kW-class micro gas turbine. Performance characteristics at part-load operating conditions with different kinds of control strategies of supplied fuel and air to the hybrid system are investigated in this study.


Author(s):  
Sepehr Sanaye ◽  
Salahadin Hosseini

A novel procedure for finding the optimum values of design parameters of industrial twin-shaft gas turbines at various ambient temperatures is presented here. This paper focuses on being off design due to various ambient temperatures. The gas turbine modeling is performed by applying compressor and turbine characteristic maps and using thermodynamic matching method. The gas turbine power output is selected as an objective function in optimization procedure with genetic algorithm. Design parameters are compressor inlet guide vane angle, turbine exit temperature, and power turbine inlet nozzle guide vane angle. The novel constrains in optimization are compressor surge margin and turbine blade life cycle. A trained neural network is used for life cycle estimation of high pressure (gas generator) turbine blades. Results for optimum values for nozzle guide vane/inlet guide vane (23°/27°–27°/6°) in ambient temperature range of 25–45 ℃ provided higher net power output (3–4.3%) and more secured compressor surge margin in comparison with that for gas turbines control by turbine exit temperature. Gas turbines thermal efficiency also increased from 0.09 to 0.34% (while the gas generator turbine first rotor blade creep life cycle was kept almost constant about 40,000 h). Meanwhile, the averaged values for turbine exit temperature/turbine inlet temperature changed from 831.2/1475 to 823/1471°K, respectively, which shows about 1% decrease in turbine exit temperature and 0.3% decrease in turbine inlet temperature.


Author(s):  
D. Little ◽  
H. Nikkels ◽  
P. Smithson

For a medium sized (300 MW) utility producing electricity from a 130 MW combined cycle, and supplemental 15 MW to 77 MW capacity simple cycle gas turbines, the incremental fuel costs accompanying changes in generating capacity vary considerably with unit, health, load level, and ambient. To enable incremental power to be sold to neighbouring utilities on an incremental fuel cost basis, accurate models of all gas turbines and the combined cycle were developed which would allow a realistic calculation of fuel consumption under all operating conditions. The fuel cost prediction program is in two parts; in the first part, gas turbine health is diagnosed from measured parameters; in the second part, fuel consumption is calculated from compressor and turbine health, ambient conditions and power levels. The paper describes the program philosophy, development, and initial operating experience.


Author(s):  
E. Tsoutsanis ◽  
Y. G. Li ◽  
P. Pilidis ◽  
M. Newby

Accurate gas turbine performance simulation is a vital aid to the operational and maintenance strategy of thermal plants having gas turbines as their prime mover. Prediction of the part load performance of a gas turbine depends on the quality of the engine’s component maps. Taking into consideration that compressor maps are proprietary information of the manufacturers, several methods have been developed to encounter the above limitation by scaling and adapting component maps. This part of the paper presents a new off-design performance adaptation approach with the use of a novel compressor map generation method and Genetic Algorithms (GA) optimization. A set of coefficients controlling a generic compressor performance map analytically is used in the optimization process for the adaptation of the gas turbine performance model to match available engine test data. The developed method has been tested with off-design performance simulations and applied to a GE LM2500+ aeroderivative gas turbine operating in Manx Electricity Authority’s combined cycle power plant in the Isle of Man. It has been also compared with an earlier off-design performance adaptation approach, and shown some advantages in the performance adaptation.


Author(s):  
T S Kim ◽  
S T Ro

This paper demonstrates a favourable influence of turbine coolant modulation on the part load performance of gas turbines. A general simulation programme is developed, which is capable of accurately estimating the design and part load performance of modern heavy-duty gas turbines characterized by intensive turbine blade cooling Investigations are made for a typical gas turbine and two distinct load control schemes are considered: the fuel-only control and the variable compressor geometry control. Maintaining blade temperatures as high as possible whose purpose is to minimize coolant consumption is simulated. It is found that the coolant modulation makes the part load characteristics deviate from usual behaviours and creates a considerable enhancement of part load thermal efficiency. For the fuel-only control with coolant modulation, it is predicted that efficiency can be higher than design efficiency over a wide range of part load operation.


Author(s):  
Robert Flores ◽  
Jack Brouwer

Abstract The University of California, Irvine (UCI) uses a 19 MW natural gas combined cycle (NGCC) to provide nearly all campus energy requirements. Meanwhile, the University of California system has committed to achieving carbon neutrality at all facilities by 2025. This has resulted in an influx of new energy efficiency and onsite solar generation, increasing the duration of NGCC part load operation. In addition, the shift towards carbon neutrality has resulted in the pursuit of renewable natural gas via anaerobic digestion to replace conventional fossil fuels. The combination of other sources of renewable generation and the shift towards more expensive fuels has created the need to boost NGCC part load performance. This work focuses on the methods used at UCI to explore the NGCC operating space in order to optimize part-load performance. In this work, a physical gas turbine and heat recovery steam generator model are developed and used with an exhaustive search optimization method to predict maximum part load plant efficiency. NGCC control elements considered in this work include gas turbine inlet guide vane modulation and changing combustor outlet temperature. This optimization was also used to explore replacing the current engine with a two-shaft or smaller gas turbine. Results indicate that there are some possible benefits with increased modulation of inlet guide vanes, but the largest efficiency gains are achieved when allowing the compressor to operate at variable speed. Shifting towards a smaller engine could also enable more consistent full power operation, but must be paired with additional resources in order to meet the campus demand.


Sign in / Sign up

Export Citation Format

Share Document