Off-design performance improvement of twin-shaft gas turbine by variable geometry turbine and compressor besides fuel control

Author(s):  
Sepehr Sanaye ◽  
Salahadin Hosseini

A novel procedure for finding the optimum values of design parameters of industrial twin-shaft gas turbines at various ambient temperatures is presented here. This paper focuses on being off design due to various ambient temperatures. The gas turbine modeling is performed by applying compressor and turbine characteristic maps and using thermodynamic matching method. The gas turbine power output is selected as an objective function in optimization procedure with genetic algorithm. Design parameters are compressor inlet guide vane angle, turbine exit temperature, and power turbine inlet nozzle guide vane angle. The novel constrains in optimization are compressor surge margin and turbine blade life cycle. A trained neural network is used for life cycle estimation of high pressure (gas generator) turbine blades. Results for optimum values for nozzle guide vane/inlet guide vane (23°/27°–27°/6°) in ambient temperature range of 25–45 ℃ provided higher net power output (3–4.3%) and more secured compressor surge margin in comparison with that for gas turbines control by turbine exit temperature. Gas turbines thermal efficiency also increased from 0.09 to 0.34% (while the gas generator turbine first rotor blade creep life cycle was kept almost constant about 40,000 h). Meanwhile, the averaged values for turbine exit temperature/turbine inlet temperature changed from 831.2/1475 to 823/1471°K, respectively, which shows about 1% decrease in turbine exit temperature and 0.3% decrease in turbine inlet temperature.

Author(s):  
Phillip Waniczek ◽  
Dirk Therkorn ◽  
Darrel Lilley

This paper describes a method that optimizes the commercial benefit by modifying gas turbine control parameters like turbine inlet temperature and variable inlet guide vane position for any dispatched power plant load. The method is a trade-off between best efficiency in the component characteristic together with higher efficiency due to increased turbine inlet temperature and lifetime. With commercial data, both effects are transferred into costs and an optimization routine identifies controller settings for minimum power plant operation cost. Test cases demonstrate the advantage of the operational cost optimization. Costs are calculated based on historic plant data with the original and the optimized operation concept. Although savings per operating hour are small, the accumulated savings over years or major inspection intervals are significant. It could be demonstrated that in regions with high fuel prices the commercial benefit of the optimized gas turbine operating concept sums up to “several million dollars” of savings. Parametric and sensitivity studies show the effect of the main parameters. Dispatch power optimization is not subject of the presented model, but can be implemented on top of the proposed concept. All in all, this work demonstrates and quantifies the commercial benefits when todays and future digital industrial capabilities are applied to gas turbine operation concepts and strategies. The proposed digital approach has the advantage of minimum investment and is attractive for gas turbine operators to generate electricity at lower costs and fuel consumption, increasing revenues and minimizing environmental impact.


Author(s):  
Daniel E. Caguiat

The Naval Surface Warfare Center, Carderock Division (NSWCCD) Gas Turbine Emerging Technologies Code 9334 was tasked by NSWCCD Shipboard Energy Office Code 859 to research and evaluate fouling resistant compressor coatings for Rolls Royce Allison 501-K Series gas turbines. The objective of these tests was to investigate the feasibility of reducing the rate of compressor fouling degradation and associated rate of specific fuel consumption (SFC) increase through the application of anti-fouling coatings. Code 9334 conducted a market investigation and selected coatings that best fit the test objective. The coatings selected were Sermalon for compressor stages 1 and 2 and Sermaflow S4000 for the remaining 12 compressor stages. Both coatings are manufactured by Sermatech International, are intended to substantially decrease blade surface roughness, have inert top layers, and contain an anti-corrosive aluminum-ceramic base coat. Sermalon contains a Polytetrafluoroethylene (PTFE) topcoat, a substance similar to Teflon, for added fouling resistance. Tests were conducted at the Philadelphia Land Based Engineering Site (LBES). Testing was first performed on the existing LBES 501-K17 gas turbine, which had a non-coated compressor. The compressor was then replaced by a coated compressor and the test was repeated. The test plan consisted of injecting a known amount of salt solution into the gas turbine inlet while gathering compressor performance degradation and fuel economy data for 0, 500, 1000, and 1250 KW generator load levels. This method facilitated a direct comparison of compressor degradation trends for the coated and non-coated compressors operating with the same turbine section, thereby reducing the number of variables involved. The collected data for turbine inlet, temperature, compressor efficiency, and fuel consumption were plotted as a percentage of the baseline conditions for each compressor. The results of each plot show a decrease in the rates of compressor degradation and SFC increase for the coated compressor compared to the non-coated compressor. Overall test results show that it is feasible to utilize anti-fouling compressor coatings to reduce the rate of specific fuel consumption increase associated with compressor performance degradation.


Author(s):  
A. W. Reichert ◽  
M. Janssen

Siemens heavy duty Gas Turbines have been well known for their high power output combined with high efficiency and reliability for more than 3 decades. Offering state of the art technology at all times, the requirements concerning the cooling and sealing air system have increased with technological development over the years. In particular the increase of the turbine inlet temperature and reduced NOx requirements demand a highly efficient cooling and sealing air system. The new Vx4.3A family of Siemens gas turbines with ISO turbine inlet temperatures of 1190°C in the power range of 70 to 240 MW uses an effective film cooling technique for the turbine stages 1 and 2 to ensure the minimum cooling air requirement possible. In addition, the application of film cooling enables the cooling system to be simplified. For example, in the new gas turbine family no intercooler and no cooling air booster for the first turbine vane are needed. This paper deals with the internal air system of Siemens gas turbines which supplies cooling and sealing air. A general overview is given and some problems and their technical solutions are discussed. Furthermore a state of the art calculation system for the prediction of the thermodynamic states of the cooling and sealing air is introduced. The calculation system is based on the flow calculation package Flowmaster (Flowmaster International Ltd.), which has been modified for the requirements of the internal air system. The comparison of computational results with measurements give a good impression of the high accuracy of the calculation method used.


Author(s):  
Katsuyoshi Tada ◽  
Kei Inoue ◽  
Tomo Kawakami ◽  
Keijiro Saitoh ◽  
Satoshi Tanimura

Gas-turbine combined-cycle (GTCC) power generation is clean and efficient, and its demand will increase in the future from economic and social perspectives. Raising turbine inlet temperature is an effective way to increase combined cycle efficiency and contributes to global environmental conservation by reducing CO2 emissions and preventing global warming. However, increasing turbine inlet temperature can lead to the increase of NOx emissions, depletion of the ozone layer and generation of photochemical smog. To deal with this issue, MHPS (MITSUBISHI HITACHI POWER SYSTEMS) and MHI (MITSUBISHI HEAVY INDUSTRIES) have developed Dry Low NOx (DLN) combustion techniques for high temperature gas turbines. In addition, fuel flexibility is one of the most important features for DLN combustors to meet the requirement of the gas turbine market. MHPS and MHI have demonstrated DLN combustor fuel flexibility with natural gas (NG) fuels that have a large Wobbe Index variation, a Hydrogen-NG mixture, and crude oils.


2020 ◽  
Vol 143 (1) ◽  
Author(s):  
Bennett M. Staton ◽  
Brian T. Bohan ◽  
Marc D. Polanka ◽  
Larry P. Goss

Abstract A disk-oriented engine was designed to reduce the overall length of a gas turbine engine, combining a single-stage centrifugal compressor and radial in-flow turbine (RIT) in a back-to-back configuration. The focus of this research was to understand how this unique flow path impacted the combustion process. Computational analysis was accomplished to determine the feasibility of reducing the axial length of a gas turbine engine utilizing circumferential combustion. The desire was to maintain circumferential swirl from the compressor through a U-bend combustion path. The U-bend reverses the outboard flow from the compressor into an integrated turbine guide vane in preparation for power extraction by the RIT. The computational targets for this design were a turbine inlet temperature of 1300 K, operating with a 3% total pressure drop across the combustor, and a turbine inlet pattern factor (PF) of 0.24 to produce a cycle capable of creating 668 N of thrust. By wrapping the combustion chamber about the circumference of the turbomachinery, the axial length of the entire engine was reduced. Reallocating the combustor volume from the axial to radial orientation reduced the overall length of the system up to 40%, improving the mobility and modularity of gas turbine power in specific applications. This reduction in axial length could be applied to electric power generation for both ground power and airborne distributive electric propulsion. Computational results were further compared to experimental velocity measurements on custom fuel–air swirl injectors at mass flow conditions representative of 668 N of thrust, providing qualitative and quantitative insight into the stability of the flame anchoring system. From this design, a full-scale physical model of the disk-oriented engine was designed for combustion analysis.


2018 ◽  
Author(s):  
Tao Wang ◽  
Yong-sheng Tian ◽  
Zhao Yin ◽  
Qing Gao ◽  
Chun-qing Tan

This paper proposes an inlet guide vane control law optimization technique for improving the off-design working condition thermal efficiency of triaxial gas turbine. Gas turbine dynamic and steady component-level simulation models are established in MATLAB/SIMULINK via Newton-Raphson algorithm based on component characteristic maps. After validating the models against experimental data and Gasturb software, they are applied to determine the effects of guide vane angle on gas turbine performance parameters. High Efficiency Mode (HEM) is utilized to adjust the power turbine inlet guide vanes to enhance the gas turbine efficiency and decrease the specific fuel consumption under off-design working conditions on account of the above gas turbine overall performance analysis results. The optimal angles of power turbine inlet guide vanes for various working conditions are acquired based on the steady gas turbine model as-established. HEM enhances the gas turbine’s thermal efficiency without exceeding its temperature or rotational speed constraints. The Radial Basis Function (RBF), a three-layer, feedforward neural network, is employed to fit the optimal guide vane angles and establish the corresponding relationship between the angles and various working conditions by system identification. The control strategy and gas turbine dynamic simulation model are tested in MATLAB/SIMULINK to verify their effects on gas turbine performance. The guide vane angle is found to significantly influence the gas turbine operating parameters, and HEM to effectively optimize gas turbine performance even within unpredictable atmospheric environment and working conditions.


Author(s):  
Thomas P. Schmitt ◽  
Herve Clement

Current trends in usage patterns of gas turbines in combined cycle applications indicate a substantial proportion of part load operation. Commensurate with the change in operating profile, there has been an increase in the propensity for part load performance guarantees. When a project is structured such that gas turbines are procured as equipment-only from the manufacturer, there is occasionally a gas turbine part load performance guarantee that coincides with the net plant combined cycle part load performance guarantee. There are several methods by which to accomplish part load gas turbine performance testing. One of the more common methods is to operate the gas turbine at the specified load value and construct correction curves at constant load. Another common method is to operate the gas turbine at a specified load percentage and construct correction curves at constant percent load. A third method is to operate the gas turbine at a selected load level that corresponds to a predetermined compressor inlet guide vane (IGV) angle. The IGV angle for this third method is the IGV angle that is needed to achieve the guaranteed load at the guaranteed boundary conditions. The third method requires correction curves constructed at constant IGV, just like base load correction curves. Each method of test and correction embodies a particular set of advantages and disadvantages. The results of an exploration into the advantages and disadvantages of the various performance testing and correction methods for part load performance testing of gas turbines are presented. Particular attention is given to estimates of the relative uncertainty for each method.


Author(s):  
Minking K. Chyu ◽  
Sin Chien Siw

The performance goal of modern gas turbine engines, both land-base and air-breathing engines, can be achieved by increasing the turbine inlet temperature (TIT). The level of TIT in the near future can reach as high as 1700 °C for utility turbines and over 1900 °C for advanced military engines. Advanced and innovative cooling techniques become one of the crucial major elements supporting the development of modern gas turbines, both land-based and air-breathing engines with continual increment of turbine inlet temperature (TIT) in order to meet higher energy demand and efficiency. This paper discusses state-of-the-art airfoil cooling techniques that are mainly applicable in the mainbody and trailing edge section of turbine airfoil. Potential internal cooling designs for near-term applications based on current manufacturing capabilities are identified. A literature survey focusing primarily on the past four to five years has also been performed.


1992 ◽  
Vol 114 (2) ◽  
pp. 277-286 ◽  
Author(s):  
A. Sehra ◽  
J. Bettner ◽  
A. Cohn

An aerodynamic design study to configure a high-efficiency industrial-size gas turbine compressor is presented. This study was conducted using an advanced aircraft engine compressor design system. Starting with an initial configuration based on conventional design practice, compressor design parameters were progressively optimized. To improve the efficiency potential of this design further, several advanced design concepts (such as stator ends bends and velocity controlled airfoils) were introduced. The projected poly tropic efficiency of the final advanced concept compressor design having 19 axial stages was estimated at 92.8 percent, which is 2 to 3 percent higher than the current high-efficiency aircraft turbine engine compressors. The influence of variable geometry on the flow and efficiency (at design speed) was also investigated. Operation at 77 percent design flow with inlet guide vanes and front five variable stators is predicted to increase the compressor efficiency by 6 points as compared to conventional designs having only the inlet guide vane as variable geometry.


1983 ◽  
Vol 105 (1) ◽  
pp. 72-79 ◽  
Author(s):  
W. I. Rowen ◽  
R. L. Van Housen

Gas turbines furnished with heat recovery equipment generally have maximum cycle efficiency when the gas turbine is operated at its ambient capability. At reduced gas turbine output the cycle performance can fall off rapidly as gas turbine exhaust temperature drops, which reduces the heat recovery equipment performance. This paper reviews the economic gains which can be realized through use of several control modes which are currently available to optimize the cycle efficiency at part load operation. These include variable inlet guide vane (VIGV) control for single-shaft units, and combined VIGV and variable high-pressure set (compressor) speed control for two-shaft units. In addition to the normal control optimization mode to maintain the maximum exhaust temperature, a new control mode is discussed which allows airflow to be modulated in response to a process signal while at constant part load. This control feature is desirable for gas turbines which supply preheated combustion air to fired process heaters.


Sign in / Sign up

Export Citation Format

Share Document