Design of Ellipsoidal Heads Using Elastic-Plastic Finite Element Analysis

Author(s):  
Donald J. Florizone

Traditional design techniques result in excess material being required for ellipsoidal heads. The 2001 ASME Boiler and Pressure Vessel Code Section VIII Division 1, UG-32D and Section VIII Division 2, AD-204 limit the minimum design thickness of the heads. ASME Boiler and Pressure Vessel Code Case 2261 provides alternate equations that enable thinner head design thickness. VIII-2 Appendix 3 and 4 methods potentially could be used to further optimize the head thickness. All the equations in the code use one thickness for the entire head. On large diameter thin heads the center or spherical area is often thicker than the knuckle area due to the method of manufacture. Including this extra material in the design calculations results in an increase of the MAWP of large diameter thin heads. VIII-2, AD-200 of the code permits localized thinning in a circumferential band in a cylindrical shell. Applying these same rules to elliptical heads would permit thinning in the knuckle region as well. Engineers have powerful finite element analysis tools that can be used to accurately determine levels of plastic strain and plastic deformed shapes. It is proposed that VIII-2 Appendix 4 and 5 methods be permitted for the design of elliptical heads. Doing so would permit significant decreases in thickness requirements. Different methods of Plastic Finite Element Analysis (PFEA) are investigated. An analysis of a PVRC sponsored burst test is done to develop and verify the PFEA methods. Two designs based on measurements of actual vessels are analyzed to determine the maximum allowable working pressures (MAWP) for thick and thin heads with and without local thin regions. MAWP is determined by limit analysis, per VIII-2 4-136.3 and by two other proposed methods. Using Burst FEA, the calculated burst pressure is multiplied by a safety factor to obtain MAWP. Large deflection large strain elastic perfectly plastic limit analyses (LDLS EPP LL) method includes the beneficial effect of deformations when determining the maximum limit pressure. Elliptical heads become more spherical during deformation. The spherical shape has higher pressure restraining capabilities. An alternate design equation for elliptical heads based on the LDLS EPP LL calculations is also proposed.

2014 ◽  
Vol 598 ◽  
pp. 194-197
Author(s):  
Hong Jun Li ◽  
Qiang Ding ◽  
Xun Huang

Stress linearization is used to define constant and linear through-thickness FEA (Finite Element Analysis) stress distributions that are used in place of membrane and membrane plus bending stress distributions in pressure vessel Design by Analysis. In this paper, stress linearization procedures are reviewed with reference to the ASME Boiler & Pressure Vessel Code Section VIII Division 2 and EN13445. The basis of the linearization procedure is stated and a new method of stress linearization considering selected stress tensors for linearization is proposed.


Author(s):  
Yogeshwar Hari ◽  
Ram Munjal ◽  
Chawki Obeid

The main objective of this paper is to improve a jacketed vessel. The jacketed vessel is usually chosen to heat the contents of the vessel. The chamber or annulus contains fluid under pressure to heat the inner vessel contents. The initial over-all dimensions of the vessel are based on the capacity of the stored liquid. The design was in accordance with the ASME Boiler & Pressure Vessel Code, Section VIII, Div 1. The jacketed vessel bottom head and jacket bottom head are being improved to withstand internal and external design pressures. Bottom head of the jacket can be reinforced in one of the three ways, namely: (1) rings which are radial (these rings also create flow for the fluid); (2) attachment of the rings to the bottom jacket head with stays, since rings cannot be physically welded to the bottom jacket; or (3) there is a possibility, the new bottom head and jacketed head combination can be cast, but that would not be economically feasible. This leads to the following six configurations considered in this paper and they are: (1) internal pressure of 50 psi, (2) external pressure + vacuum pressure of 65 psi, (3) reinforcement with 5 rings with external pressure of 65 psi, (4) rings welded with the bottom jacket head with external pressure of 65 psi, (5) welded with stays on ring location (stay diameter of 1 inch) with external pressure of 65 psi, and (6) welded with stays on ring location (stay diameter of 1.5 inch) with external pressure of 65 psi. The pattern of stays chosen for this analysis is one of uniform distribution on ring locations, which are radially situated. The design dimensions based on Code sizing are used to recalculate the stresses for the jacket vessel. The dimensional jacketed vessel is modeled using STAAD III Finite Element Analysis (FEA) software. The design is found to be safe for the specific configuration considered herein with stays.


Author(s):  
Michael W. Guillot ◽  
Jack E. Helms

Finite element analysis is widely used to model the stresses resulting from penetrations in pressure vessels to accommodate components such as nozzles and man-ways. In many cases a reinforcing pad is required around the nozzle or other component to meet the design requirements of Section VIII, Division 1 or 2, of the ASME Pressure Vessel Code [1]. Several different finite element techniques are currently used for calculating the effects of reinforcing pads on the shell stresses resulting from penetrations for nozzles or man-ways. In this research the stresses near a typical reinforced nozzle on a pressure vessel shell are studied. Finite element analysis is used to model the stresses in the reinforcing pad and shell. The commercially available software package ANSYS is used for the modeling. Loadings on the nozzle are due to combinations of internal pressure and moments to simulate piping attachments. The finite element results are compared to an analysis per Welding Research Council Bulletin 107 [2].


Author(s):  
Takuyo Kaida

Fitness-For-Service (FFS) assessment procedure can be also used to determine a reduced Maximum Allowable Working Pressure (MAWP) for cylindrical and spherical pressure vessel with local metal loss. A reduced MAWP is calculated from the Remaining Strength Factor (RSF). RSF is defined as ratio between plastic collapse load of the damaged component and that of the undamaged component. RSF needs to be calculated accurately in order to continue the damaged component in service safely. In this paper, RSFs of the damaged components with variously-shaped local metal loss were investigated. Especially, effects of circumferential width of local metal loss for cylindrical pressure vessel are investigated by both hydrostatic burst test and finite element analysis (FEA). The configurations of the local metal loss are rectangle. The longitudinal length and minimum thickness are fixed. FEA using the criterion proposed by Miyazaki et al. is effective to estimate fracture ductility under the multi-axial stress condition accurately, and effects of circumferential width is evaluated. In addition, RSF for spherical pressure vessel with relatively large diameter/thickness ratio was calculated by finite element analysis. Both results were compared to the calculation results using the equation in API 579-1/ASME FFS-1. The FFS assessment procedure is validated as conservative assessment experimentally and numerically.


2003 ◽  
Vol 125 (4) ◽  
pp. 365-370 ◽  
Author(s):  
Martin Muscat ◽  
Donald Mackenzie

An investigation of the shakedown behavior of axisymmetric nozzles under internal pressure is presented. The analysis is based on elastic-plastic finite element analysis and Melan’s lower bound shakedown theorem. Calculated shakedown pressures are compared with values from the literature and with the ASME Boiler and Pressure Vessel Code Section VIII Division 2 primary plus secondary stress limits. Results obtained by the lower bound method are also verified by cyclic elastic-plastic finite element analysis.


2017 ◽  
Vol 10 (25) ◽  
pp. 1-10
Author(s):  
Deepali Mathur ◽  
Mandar Sapre ◽  
Chintan Hingoo ◽  
◽  
◽  
...  

Author(s):  
M. Rashid ◽  
S. Chen ◽  
L. E. Collins

Tensile testing on large diameter line pipe is generally done using strap samples obtained in the transverse to pipe axis (TPA) orientation of a pipe. The strap samples are then flattened and machined prior to testing. Although the standardized tensile testing is well documented, the variability in the reported TPA tensile properties of the same material tested within a lab or at different labs has always been an issue. Recent work conducted at EVRAZ NA research lab has identified flattening as the main source of the variability in reported yield strength (YS) values for line pipe. The lack of a standard procedure for flattening TPA strap samples is a major obstacle to obtaining consistent results. Therefore, the main objective of this current study was to establish a standardized flattening procedure for TPA strap samples. Both finite element analysis (FEA) and experimental approaches were adopted. Various flattening methods and fixtures were studied. Extensive flattening experiments were conducted on TPA samples from different line pipe products. Results showed that the spring back after flattening in a TPA sample is different for pipes with different gauge and grades. It was established that consistent flattening can be achieved using appropriate fixtures for differerent ranges of tubular products defined by grade, diameter and gauges. Evaluation of the flattening fixture designs and experimental results are discussed in this paper.


Sign in / Sign up

Export Citation Format

Share Document