Buckling of High-Strength Steel Cylinders Under Cyclic Bending in the Inelastic Range

Author(s):  
George E. Varelis ◽  
Spyros A. Karamanos

The present paper examines the structural behavior of high-strength elongated steel cylinders, referred to as tubes or pipes, subjected to strong cyclic bending, through a rigorous finite element simulation. The cylinder exhibits cross-sectional distortion, in the form of ovalization, combined with excessive plastic deformations. Those deformations, under repeated loading, may lead to instability in the form of local buckling (wrinkling) and, eventually, failure of the loaded member. The study focuses on relatively-thick-walled cylindrical members, which exhibit local buckling in the plastic range of the steel material, with the use of advanced nonlinear finite element models able to describe both geometrical and material nonlinearities. A cyclic plasticity model that adopts the “Bounding Surface” concept is employed, calibrated through special-purpose material testing, and implemented within ABAQUS, using a user-subroutine. The numerical model is validated by comparison with available experimental data on tubular members made of high-strength steel. Finally, a parametric numerical study is conducted, aimed at determining the effects of geometrical imperfections of the cylinder on its plastic buckling performance.

2014 ◽  
Vol 136 (2) ◽  
Author(s):  
George E. Varelis ◽  
Spyros A. Karamanos

The present paper examines the structural behavior of elongated steel hollow cylinders, referred to as tubes or pipes, subjected to large cyclic bending, through a rigorous finite element simulation. The bent cylinders exhibit cross-sectional distortion, in the form of ovalization, combined with excessive plastic deformations. Those deformations grow under repeated loading and may lead to structural instability in the form of local buckling (wrinkling) and, eventually, failure of the loaded member. The study focuses on relatively thick-walled seamless cylindrical members made of high-strength steel, which exhibit local buckling in the plastic range of the steel material. The analysis is conducted using advanced nonlinear finite element models capable of describing both geometrical and material nonlinearities. A cyclic plasticity model that adopts the “bounding surface” concept is employed. The material model is calibrated through special-purpose material testing, and implemented within ABAQUS, using a user-subroutine. The finite element model is validated by comparison with two experiments on high-strength steel tubular members. Special emphasis is given on the increase of ovalization and the gradual development of small-amplitude initial wrinkles with repeated loading cycles. A parametric numerical study is conducted, aimed at determining the effects of initial wrinkles on plastic buckling performance.


2011 ◽  
Vol 374-377 ◽  
pp. 2430-2436
Author(s):  
Gang Shi ◽  
Zhao Liu ◽  
Yong Zhang ◽  
Yong Jiu Shi ◽  
Yuan Qing Wang

High strength steel sections have been increasingly used in buildings and bridges, and steel angles have also been widely used in many steel structures, especially in transmission towers and long span trusses. However, high strength steel exhibits mechanical properties that are quite different from ordinary strength steel, and hence, the local buckling behavior of steel equal angle members under axial compression varies with the steel strength. However, there is a lack of research on the relationship of the local buckling behavior of steel equal angle members under axial compression with the steel strength. A finite element model is developed in this paper to analyze the local buckling behavior of steel equal angle members under axial compression, and study its relationship with the steel strength and the width-to-thickness ratio of the angle leg. The finite element analysis (FEA) results are compared with the corresponding design method in the American code AISC 360-05, which provides a reference for the related design.


2011 ◽  
Vol 243-249 ◽  
pp. 1477-1482 ◽  
Author(s):  
Gang Shi ◽  
Cuo Cuo Lin ◽  
Yuan Qing Wang ◽  
Yong Jiu Shi ◽  
Zhao Liu

Compared to the ordinary strength steel extensively applied in structures currently, high strength steel, a new kind of construction material, has many differences on mechanical properties. Though high strength steel has been applied in several projects in the world, which has obtained good effects, there is a lack of the design method for high strength steel structures and researches on the loading capacity of high strength steel members. To study the local buckling behavior of high strength steel members under axial compression, finite element models are developed to predict the loading capacity of high strength steel welded I-section and box-section stub columns under axial compression in this paper. With accurate simulation of 17 high strength steel specimens, the finite element analysis results agree well with the corresponding test results, and the average deviation of the ultimate loading capacity of 17 specimens is about -3.1%. It’s verified that the finite element models developed in this paper can accurately simulate high strength steel members with the initial geometric imperfections and residual stresses, and analyze the local buckling behavior of high strength steel members under axial compression. In addition, it provides a basis for the parametric study of high strength steel members under axial compression in future.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Hui Chen ◽  
Jinjin Zhang ◽  
Jin Yang ◽  
Feilong Ye

The tensile behaviors of corroded steel bars are important in the capacity evaluation of corroded reinforced concrete structures. The present paper studies the mechanical behavior of the corroded high strength reinforcing steel bars under static and dynamic loading. High strength reinforcing steel bars were corroded by using accelerated corrosion methods and the tensile tests were carried out under different strain rates. The results showed that the mechanical properties of corroded high strength steel bars were strain rate dependent, and the strain rate effect decreased with the increase of corrosion degree. The decreased nominal yield and ultimate strengths were mainly caused by the reduction of cross-sectional areas, and the decreased ultimate deformation and the shortened yield plateau resulted from the intensified stress concentration at the nonuniform reduction. Based on the test results, reduction factors were proposed to relate the tensile behaviors with the corrosion degree and strain rate for corroded bars. A modified Johnson-Cook strength model of corroded high strength steel bars under dynamic loading was proposed by taking into account the influence of corrosion degree. Comparison between the model and test results showed that proposed model properly describes the dynamic response of the corroded high strength rebars.


2022 ◽  
Vol 171 ◽  
pp. 108677
Author(s):  
Bing Li ◽  
Chao Cheng ◽  
Zhimin Song ◽  
Xianlei Cao ◽  
Zhengyi Kong

2014 ◽  
Vol 622-623 ◽  
pp. 201-206 ◽  
Author(s):  
Kenichiro Mori ◽  
Tomoyoshi Maeno ◽  
Shohei Nakamoto

A hot spline forming process of die-quenched gear drums using resistance heating of a side wall of a cup formed by cold deep drawing and ironing was developed. The side wall having uniform cross-sectional area is resistance-heated by passage of the current in the axial direction, the heated side wall of the drawn cup is ironed and is finally die-quenched. The gear drum was successfully formed and the hardness was between 400 and 500 HV. Not only the formability was improved but also the formed dram was hardly oxidised because of rapid resistance heating.


Sign in / Sign up

Export Citation Format

Share Document