Modeling of a Heaving Buoy Wave Energy Converter With Stacked Dielectric Elastomer Generator
This paper introduces a novel architecture of Wave Energy Converter (WEC) provided with a Dielectric Elastomer (DE) Power Take–Off (PTO) system. The device, named Poly–Buoy, includes a heaving buoy as primary interface, that captures the mechanical energy from waves, and a DE Generator (DEG), made by stacked layers of silicone elastomer, that converts mechanical energy into electricity. A mathematical model of the Poly–Buoy is proposed, which includes analytical electro–hyperlastic equations for the DEG and a linear model for wave-buoy hydrodynamics. Procedures for the design and optimization of different layouts and control strategies for the DE–PTO are introduced that specifically consider single–DEG and dual–DEG architectures. A numerical case study is also reported for specific geometrical dimensions of the buoy and specific wave climate data.