latching control
Recently Published Documents


TOTAL DOCUMENTS

32
(FIVE YEARS 5)

H-INDEX

11
(FIVE YEARS 0)

Author(s):  
Gustavo O. Guarniz Avalos ◽  
Milad Shadman ◽  
Segen F. Estefen

Abstract The latching control represents an attractive alternative to increase the power absorption of wave energy converters (WECs) by tuning the phase of oscillator velocity to the wave excitation phase. However, increasing the amplitude of motion of the floating body is not the only challenge to obtain a good performance of the WEC. It also depends on the efficiency of the power take-off system (PTO). This study aims to address the actual power performance and operation of a heaving point absorber with a direct mechanical drive PTO system controlled by latching. The PTO characteristics, such as the gear ratio, the flywheel inertia, and the electric generator, are analyzed in the WEC performance. Three cylindrical point absorbers are also considered in the present study. A wave-to-wire model is developed to simulate the coupled hydro-electro-mechanical system in regular waves. The wave energy converter (WEC) performance is analyzed using the potential linear theory but considering the viscous damping effect according to the Morison equation to avoid the overestimated responses of the linear theory near resonance when the latching control system is applied. The latching control system increases the mean power. However, the increase is not significant if the parameters that characterize the WEC provide a considerable mean power. The performance of the proposed mechanical power take-off depends on the gear ratio and flywheel. However, the gear ratio shows a more significant influence than the flywheel inertia. The operating range of the generator and the diameter/draft ratio of the buoy also influence the PTO performance.


2021 ◽  
Vol 236 ◽  
pp. 109512
Author(s):  
Changhai Liu ◽  
Min Hu ◽  
Zhixue Zhao ◽  
Yishan Zeng ◽  
Wenzhi Gao ◽  
...  

Author(s):  
Sung-Jae Kim ◽  
Weoncheol Koo ◽  
Chul H. Jo

Abstract In this study, a latching control strategy was utilized to increase the efficiency of a heaving buoy-type point absorber with a hydraulic Power take-off (PTO) system. For this purpose, the hydrodynamic performance of a floating buoy was analyzed based on the potential flow theory and Cummins equation. Nonlinear Froude-Krylov (FK) force according to instantaneous wetted surface of a buoy was calculated by a theoretical solution. The effect of the latching control on a point absorber was evaluated by considering PTO performance with hydrodynamic coefficients including nonlinear FK force. The hydraulic PTO system was modeled as an approximate coulomb damping force.


2018 ◽  
Vol 128 ◽  
pp. 57-67 ◽  
Author(s):  
Irina Temiz ◽  
Jennifer Leijon ◽  
Boel Ekergård ◽  
Cecilia Boström

Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 3036 ◽  
Author(s):  
Simon Thomas ◽  
Mikael Eriksson ◽  
Malin Göteman ◽  
Martyn Hann ◽  
Jan Isberg ◽  
...  

A challenge while applying latching control on a wave energy converter (WEC) is to find a reliable and robust control strategy working in irregular waves and handling the non-ideal behavior of real WECs. In this paper, a robust and model-free collaborative learning approach for latchable WECs in an array is presented. A machine learning algorithm with a shallow artificial neural network (ANN) is used to find optimal latching times. The applied strategy is compared to a latching time that is linearly correlated with the mean wave period: It is remarkable that the ANN-based WEC achieved a similar power absorption as the WEC applying a linear latching time, by applying only two different latching times. The strategy was tested in a numerical simulation, where for some sea states it absorbed more than twice the power compared to the uncontrolled WEC and over 30% more power than a WEC with constant latching. In wave tank tests with a 1:10 physical scale model the advantage decreased to +3% compared to the best tested constant latching WEC, which is explained by the lower advantage of the latching strategy caused by the non-ideal latching of the physical power take-off model.


2018 ◽  
Vol 222 ◽  
pp. 717-728 ◽  
Author(s):  
Jinming Wu ◽  
Yingxue Yao ◽  
Liang Zhou ◽  
Malin Göteman

Sign in / Sign up

Export Citation Format

Share Document