In situ ellipsometric study of As capping and low temperature molecular-beam epitaxy GaAs growth and implications for the low temperature critical thickness

Author(s):  
K. G. Eyink
1996 ◽  
Vol 450 ◽  
Author(s):  
F. Aqariden ◽  
P. S. Wijew Arnasuriya ◽  
S. Rujirawat ◽  
S. Sivananthan

ABSTRACTThe results of arsenic incorporation in HgCdTe (MCT) layers grown by molecular beam epitaxy (MBE) are reported. The incorporation into MBE-MCT was carried out by a technique called planar doping. Arsenic was successfully incorporated during the MBE growth or after a low temperature anneal as acceptors. These results are very promising for in-situ fabrication of advanced optoelectronic devices using HgCdTe material.


CrystEngComm ◽  
2014 ◽  
Vol 16 (46) ◽  
pp. 10721-10727 ◽  
Author(s):  
Fangliang Gao ◽  
Lei Wen ◽  
Yunfang Guan ◽  
Jingling Li ◽  
Xiaona Zhang ◽  
...  

The as-grown In0.53Ga0.47As epi-layer grown on Si substrate by using low-temperature In0.4Ga0.6As buffer layer with in-situ annealing is of a high degree of structural perfection.


1992 ◽  
Vol 60 (16) ◽  
pp. 2005-2007 ◽  
Author(s):  
L.‐W. Yin ◽  
J. P. Ibbetson ◽  
M. M. Hashemi ◽  
A. C. Gossard ◽  
U. K. Mishra ◽  
...  

1986 ◽  
Vol 90 ◽  
Author(s):  
N. C. Giles ◽  
R. N. Bicknell ◽  
J. F. Schetzina

ABSTRACTN-type and p-type (100) CdTe films have been grown on (100) CdTe substrates by photoassisted molecular beam epitaxy, using indium and antimony as n-type and p-type dopants, respectively. The application of this growth technique to substitutionally dope another II-VI material is demonstrated by the successful n-type doping of (100) CdMnTe films with indium. Modulationdoped superlattices consisting of barrier layers of CdMnTe:In alternating with CdTe have also been grown. The point defect nature of these in situ doped films and multilayers is studied with low temperature (1.6–5 K) photoluminescence and excitation photoluminescence measurements. The introduction of the dopant atoms using this new growth technique produces immediate changes in the photoluminescence spectra of the epilayers. Photoluminescence studies of the superlattices show the effects of quantum well confinement and band filling due to free carriers.


Author(s):  
D. Loretto ◽  
J. M. Gibson ◽  
S. M. Yalisove ◽  
R. T. Tung

The cobalt disilicide/silicon system has potential applications as a metal-base and as a permeable-base transistor. Although thin, low defect density, films of CoSi2 on Si(111) have been successfully grown, there are reasons to believe that Si(100)/CoSi2 may be better suited to the transmission of electrons at the silicon/silicide interface than Si(111)/CoSi2. A TEM study of the formation of CoSi2 on Si(100) is therefore being conducted. We have previously reported TEM observations on Si(111)/CoSi2 grown both in situ, in an ultra high vacuum (UHV) TEM and ex situ, in a conventional Molecular Beam Epitaxy system.The procedures used for the MBE growth have been described elsewhere. In situ experiments were performed in a JEOL 200CX electron microscope, extensively modified to give a vacuum of better than 10-9 T in the specimen region and the capacity to do in situ sample heating and deposition. Cobalt was deposited onto clean Si(100) samples by thermal evaporation from cobalt-coated Ta filaments.


Sign in / Sign up

Export Citation Format

Share Document