scholarly journals Dual-directional profile filter for digital terrain model generation from airborne laser scanning data

2014 ◽  
Vol 8 (1) ◽  
pp. 083619 ◽  
Author(s):  
Cheng-Kai Wang ◽  
Yi-Hsing Tseng
2021 ◽  
Vol 6 (1-2) ◽  
pp. 159-176
Author(s):  
Filip Prekop ◽  
Petr Krištuf

This paper presents a new hillfort site which is situated on top of „Čerťák“ Hill (651 m n. m.), Sovolusky municipality, Karlovy Vary district. It has been identified with the help of a digital terrain model based on Airborne Laser Scanning (LiDAR). Two separate lines of stone ramparts have been confirmed on top of the Čerťák Hill, formed by a significant right bank meander in the upper course of the river Střela. The inner area reaches 1.4 ha and the external enclosed area spreads to 2.3 ha. Subsequent field research yielded a collection of more than 500 pottery fragments from the Late Hallstatt period. The dispersion of finds shows relatively intensive settlement. The paper also discusses other sites in the surrounding region which date to the same period. The Hallstatt settlement seems to have been a structurally connected complex in the presented area.


2020 ◽  
Vol 12 (1) ◽  
pp. 1185-1199
Author(s):  
Mirosław Kamiński

AbstractThe research area is located on the boundary between two Paleozoic structural units: the Radom–Kraśnik Block and the Mazovian–Lublin Basin in the southeastern Poland. The tectonic structures are separated by the Ursynów–Kazimierz Dolny fault zone. The digital terrain model obtained by the ALS (Airborne Laser Scanning) method was used. Classification and filtration of an elevation point cloud were performed. Then, from the elevation points representing only surfaces, a digital terrain model was generated. The model was used to visually interpret the course of topolineaments and their automatic extraction from DTM. Two topolineament systems, trending NE–SW and NW–SE, were interpreted. Using the kernel density algorithm, topolineament density models were generated. Using the Empirical Bayesian Kriging, a thickness model of quaternary deposits was generated. A relationship was observed between the course of topolineaments and the distribution and thickness of Quaternary formations. The topolineaments were compared with fault directions marked on tectonic maps of the Paleozoic and Mesozoic. Data validation showed consistency between topolineaments and tectonic faults. The obtained results are encouraging for further research.


2018 ◽  
Vol 142 (11-12) ◽  
pp. 576-577 ◽  
Author(s):  
Mateo Gašparović ◽  
Ivan Balenović ◽  
Ante Seletković ◽  
Anita Simic Milas

Digitalni model reljefa (DTM, engl. Digital Terrain Model) ima široku i važnu primjenu u mnogim djelatnostima, uključujući i šumarstvo. Međutim, precizno modeliranje terena, odnosno izrada DTM-a u šumama, bilo korištenjem terenskih metoda ili metoda daljinskih istraživanja, izazovan je i vrlo zahtjevan zadatak. U većini razvijenih zemalja svijeta, zračno lasersko skeniranje (ALS, engl. Airborne Laser Scanning) bazirano na LiDAR (engl. Light Detection and Ranging) tehnologiji trenutno predstavlja glavnu metodu za izradu DTM-a. Uslijed mogućnosti laserskog zračenja da penetrira kroz krošnje drveća, LiDAR tehnologija se pokazala kao efektivna i brza metoda za izradu DTM-a u šumskim područjima s vrlo velikom točnošću. Međutim, u mnogim zemljama svijeta, uključujući i Hrvatsku, zračno lasersko skeniranje nije u potpunosti provedeno, tj. samo su manji dijelovi zemlje pokriveni s podacima zračnog laserskog skeniranja. U tim slučajevima, DTM temeljen na stereo-fotogrametrijskoj izmjeri aerosnimaka potpomognut s terenskim podacima najčešće predstavlja glavni izvor informacija za izradu DTM-a. Poznato je da tako izrađen DTM u šumskim predjelima ima manju točnost od DTM-a dobivenog na temelju zračnog laserskog skeniranja zbog pokrivenosti terena vegetacijom. Također, u okviru nedavno provedenog istraživanja (Balenović i dr., 2018) utvrđeno je da takvi službeni fotogrametrijski digitalni podaci terena u šumskim predjelima sadrže određen broj tzv. grubih grešaka, koje mogu značajno utjecati na točnost izrađenog DTM-a. Nakon vizualnog detektiranja i manualnog uklanjanja tih pogrešaka, Balenović i dr. (2018) utvrdili su značajno poboljšanje točnosti fotogrametrijskog DTM-a. Stoga je glavni cilj ovoga rada razviti automatsku metodu za detekciju i eliminaciju vertikalnih pogrešaka u fotogrametrijskim digitalnim podacima terena te na taj način poboljšati točnost fotogrametrijskog DTM-a u nizinskim šumskim područjima Hrvatske. Ideja je razviti brzu, jednostavnu i učinkovitu metodu koja će biti primjenjiva i za druga šumska područja sličnih karakteristika, a za koja ne postoje DTM dobiven zračnim laserskim skeniranjem. Istraživanje je provedeno u nizinskim šumama na području gospodarske jedinice Jastrebarski lugovi, u neposrednoj blizini Jastrebarskog (Slika 1). Istraživanjem je obuhvaćena površina od 2.005,74 ha, na kojoj su u najvećoj mjeri zastupljene jednodobne sastojine hrasta lužnjaka (Quercus robur L.), a u ma­njoj mjeri jednodobne sastojine poljskog jasena (Fraxinus angustifolia L.) te jednodobne sastojine običnoga graba (Carpinus betulus L.). Nadmorska visina područja istraživanja kreće se u rasponu od 105 do 121 m. Fotogrametrijski DTM (DTM<sub>PHM</sub>) je izrađen iz digitalnih vektorskih podataka terena (prijelomnice, linije oblika, markantne točke terena i pravokutne mreže visinskih točaka) nabavljenih iz Državne geodetske uprave (Slika 2). Ti podaci predstavljaju nacionalni standard i jedini su dostupni podaci za izradu DTM-a u Hrvatskoj. Detaljan opis vektorskih podataka dan je u radu Balenović i dr. (2018). Prvo je iz digitalnih terenskih podataka izrađena nepravilna mreža trokuta, koja je potom linearnom interpolacijom pretvorena u rasterski DTM<sub>PHM</sub> prostorne rezolucije (veličine piksela) 0,5 m. Automatska metoda za detekciju i eliminaciju vertikalnih pogrešaka fotogrametrijskog DTM-a u nizinskim šumskim područjima razvijena je u slobodnom programskom paketu Grass GIS (Slika 3). Kombinacijom vrijednosti nagiba i tangencijalne zakrivljenosti terena rasterskog DTM<sub>PHM</sub> (Slika 4), automatskom metodom su detektirane 91 grube greške (engl. outliers). Drugim riječima, utvrđeno je da 91 točkasti vektorski objekt pogrešno prikazuje stvarnu visinu terena. Navedeni broj čini 3,2 % od ukupnog broja točkastih objekata korištenih za izradu DTM<sub>PHM</sub>-a. Nakon eliminacije detektiranih pogrešaka izrađen je novi, korigirani fotogrametrijski DTM (DTM<sub>PHMc</sub>). Za ocjenu vertikalne točnosti izvornog (DTM<sub>PHM</sub>) i korigiranog DTM-a (DTM<sub>PHMc</sub>) korišten je visoko precizni DTM dobiven zračnim laserskim skeniranjem (DTM<sub>LiD</sub>). U tu svrhu su izrađeni rasteri razlika između DTM<sub>PHM </sub>i DTM<sub>LiD</sub>, te između DTM<sub>PHMc </sub>i DTM<sub>LiD</sub>. Kako je preliminarnom analizom utvrđeno da vertikalne razlike između DTM<sub>PHM </sub>i DTM<sub>LiD</sub> nisu normalno distribuirane (Slika 5), za ocjenu točnosti su uz normalne mjere točnosti korištene i tzv. robusne mjere točnosti (Tablica 2). Dobiveni rezultati ukazuju na poboljšanje vertikalne točnosti fotogrametrijskog DTM-a primjenom razvijene automatske metode. To je posebice uočljivo na podpodručjima 2 i 3 (Slika 6 i 7) u kojima se nakon uklanjanja detektiranih grešaka, korijen srednje kvadratne pogreške (RMSE, engl. root mean square error) smanjio za 8 % odnosno 50 % (Tablica 2). Na temelju dobivenih rezultata i usporedbe s DTM<sub>LiD</sub>, može se zaključiti da predložena metoda uspješno detektira i eliminira vertikalne pogreške fotogrametrijskog DTM-a u nizinskim šumskim područjima, te slijedom toga poboljšava njegovu vertikalnu točnost.


2018 ◽  
Vol 7 (7) ◽  
pp. 285 ◽  
Author(s):  
Wioleta Błaszczak-Bąk ◽  
Zoltan Koppanyi ◽  
Charles Toth

Mobile Laser Scanning (MLS) technology acquires a huge volume of data in a very short time. In many cases, it is reasonable to reduce the size of the dataset with eliminating points in such a way that the datasets, after reduction, meet specific optimization criteria. Various methods exist to decrease the size of point cloud, such as raw data reduction, Digital Terrain Model (DTM) generalization or generation of regular grid. These methods have been successfully applied on data captured from Airborne Laser Scanning (ALS) and Terrestrial Laser Scanning (TLS), however, they have not been fully analyzed on data captured by an MLS system. The paper presents our new approach, called the Optimum Single MLS Dataset method (OptD-single-MLS), which is an algorithm for MLS data reduction. The tests were carried out in two variants: (1) for raw sensory measurements and (2) for a georeferenced 3D point cloud. We found that the OptD-single-MLS method provides a good solution in both variants; therefore, the choice of the reduction variant depends only on the user.


2021 ◽  
Vol 6 (1-2) ◽  
pp. 177-196
Author(s):  
Ondřej Malina ◽  
Lukáš Holata ◽  
Jindřich Plzák

The paper deals with the plowlands of deserted medieval villages (DMVs) representing a specific data source of medieval settlement research. Its basic priorities are based on the needs of archaeological heritage protection for a better definition of DMVs’ hinterlands, which are significantly less distinguishable in comparison with villages’ intravilans. At the same time, not much attention was paid to this area, even in known or well-surveyed sites. These issues are important especially in the context of what exactly we are looking for within the DMVs, how we define it and where we can find the best examples worthy of protection or further study. The basis of the presented work is the processing of a digital terrain model derived from airborne laser scanning data. The primary procedure consists of the ALS data processing into a DEM, its subsequent visualization, and classification of objects in DMVs’ hinterlands, which is further supplemented by selected examples of field verification. The informative value of the hinterlands is also discussed on the example of several differently preserved sites.


Author(s):  
P. Crespo-Peremarch ◽  
J. Torralba ◽  
J. P. Carbonell-Rivera ◽  
L. A. Ruiz

Abstract. Remote sensing and photogrammetry techniques have demonstrated to be an important tool for the characterization of forest ecosystems. Nonetheless, the use of these techniques requires an accurate digital terrain model (DTM) for the height normalization procedure, which is a key step prior to any further analyses. In this manuscript, we assess the extraction of the DTM for different techniques (airborne laser scanning: ALS, terrestrial laser scanning: TLS, and digital aerial photogrammetry in unmanned aerial vehicle: UAV-DAP), processing tools with different algorithms (FUSION/LDV© and LAStools©), algorithm parameters, and plot characteristics (canopy and shrub cover, and terrain slope). To do this, we compare the resulting DTMs with one used as reference and extracted from classic surveying measurements. Our results demonstrate, firstly, that ALS and reference DTMs are similar in the different scenarios, except for steep slopes. Secondly, TLS DTMs are slightly less accurate than those extracted for ALS, since items such as trunks and shrubs cause a great occlusion due to the proximity of the instrument, and some of the points filtered as ground correspond to these items as well, therefore a finer setting of algorithm parameters is required. Lastly, DTMs extracted for UAV-DAP in dense canopy scenarios have a low accuracy, however, accuracy may be enhanced by modifying the processing tool and algorithm parameters. An accurate DTM is essential for further forestry applications, therefore, to know how to take advantage of the available data to obtain the most accurate DTM is also fundamental.


2021 ◽  
Vol 13 (4) ◽  
pp. 1917
Author(s):  
Alma Elizabeth Thuestad ◽  
Ole Risbøl ◽  
Jan Ingolf Kleppe ◽  
Stine Barlindhaug ◽  
Elin Rose Myrvoll

What can remote sensing contribute to archaeological surveying in subarctic and arctic landscapes? The pros and cons of remote sensing data vary as do areas of utilization and methodological approaches. We assessed the applicability of remote sensing for archaeological surveying of northern landscapes using airborne laser scanning (LiDAR) and satellite and aerial images to map archaeological features as a basis for (a) assessing the pros and cons of the different approaches and (b) assessing the potential detection rate of remote sensing. Interpretation of images and a LiDAR-based bare-earth digital terrain model (DTM) was based on visual analyses aided by processing and visualizing techniques. 368 features were identified in the aerial images, 437 in the satellite images and 1186 in the DTM. LiDAR yielded the better result, especially for hunting pits. Image data proved suitable for dwellings and settlement sites. Feature characteristics proved a key factor for detectability, both in LiDAR and image data. This study has shown that LiDAR and remote sensing image data are highly applicable for archaeological surveying in northern landscapes. It showed that a multi-sensor approach contributes to high detection rates. Our results have improved the inventory of archaeological sites in a non-destructive and minimally invasive manner.


Sign in / Sign up

Export Citation Format

Share Document